Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Res Sq ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37425706

ABSTRACT

The vast percentage of the human genome is transcribed into RNA, many of which contain various structural elements and are important for functions. RNA molecules are conformationally heterogeneous and functionally dyanmics1, even when they are structured and well-folded2, which limit the applicability of methods such as NMR, crystallography, or cryo-EM. Moreover, because of the lack of a large structure RNA database, and no clear correlation between sequence and structure, approaches like AlphaFold3 for protein structure prediction, do not apply to RNA. Therefore determining the structures of heterogeneous RNA is an unmet challenge. Here we report a novel method of determining RNA three-dimensional topological structures using deep neural networks and atomic force microscopy (AFM) images of individual RNA molecules in solution. Owing to the high signal-to-noise ratio of AFM, our method is ideal for capturing structures of individual conformationally heterogeneous RNA. We show that our method can determine 3D topological structures of any large folded RNA conformers, from ~ 200 to ~ 420 residues, the size range that most functional RNA structures or structural elements fall into. Thus our method addresses one of the major challenges in frontier RNA structural biology and may impact our fundamental understanding of RNA structure.

3.
Commun Biol ; 6(1): 712, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433832

ABSTRACT

Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.


Subject(s)
Centrioles , Centrosome , Protein Serine-Threonine Kinases , Humans , Cell Cycle , Molecular Weight , Protein Domains , Protein Serine-Threonine Kinases/metabolism
4.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169743

ABSTRACT

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Subject(s)
Interferon-gamma , Triple Negative Breast Neoplasms , Tumor Microenvironment , Female , Humans , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism
5.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066331

ABSTRACT

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1ß/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.

6.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187532

ABSTRACT

Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression. The influence of tumor NOS2/COX2 expression on the landscape of immune markers using multiplex fluorescence imaging of 21 ER- breast tumors were stratified for survival. A powerful relationship between tumor NOS2/COX2 expression and distinct CD8+ T cell phenotypes was observed at 5 years post-diagnosis. These results were confirmed in a validation cohort using gene expression data showing that ratios of NOS2 to CD8 and COX2 to CD8 are strongly associated with poor outcomes in high NOS2/COX2-expressing tumors. Importantly, multiplex imaging identified distinct CD8+ T cell phenotypes relative to tumor NOS2/COX2 expression in Deceased vs Alive patient tumors at 5-year survival. CD8+NOS2-COX2- phenotypes defined fully inflamed tumors with significantly elevated CD8+ T cell infiltration in Alive tumors expressing low NOS2/COX2. In contrast, two distinct phenotypes including inflamed CD8+NOS2+COX2+ regions with stroma-restricted CD8+ T cells and CD8-NOS2-COX2+ immune desert regions with abated CD8+ T cell penetration, were significantly elevated in Deceased tumors with high NOS2/COX2 expression. These results were supported by applying an unsupervised nonlinear dimensionality-reduction technique, UMAP, correlating specific spatial CD8/NOS2/COX2 expression patterns with patient survival. Moreover, spatial analysis of the CD44v6 and EpCAM cancer stem cell (CSC) markers within the CD8/NOS2/COX2 expression landscape revealed positive correlations between EpCAM and inflamed stroma-restricted CD8+NOS2+COX2+ phenotypes at the tumor/stroma interface in deceased patients. Also, positive correlations between CD44v6 and COX2 were identified in immune desert regions in deceased patients. Furthermore, migrating tumor cells were shown to occur only in the CD8-NOS2+COX2+ regions, identifying a metastatic hot spot. Taken together, this study shows the strength of spatial localization analyses of the CD8/NOS2/COX2 landscape, how it shapes the tumor immune microenvironment and the selection of aggressive tumor phenotypes in distinct regions that lead to poor clinical outcomes. This technique could be beneficial for describing tumor niches with increased aggressiveness that may respond to clinically available NOS2/COX2 inhibitors or immune-modulatory agents.

7.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187660

ABSTRACT

Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.

8.
Front Mol Biosci ; 9: 964595, 2022.
Article in English | MEDLINE | ID: mdl-36052167

ABSTRACT

Crystallographic observation of structural changes in real time requires that those changes be uniform both spatially and temporally. A primary challenge with time-resolved ligand-mixing diffraction experiments is asynchrony caused by variable factors, such as efficiency of mixing, rate of diffusion, crystal size, and subsequently, conformational heterogeneity. One method of minimizing such variability is use of a photolabile caged ligand, which can fully saturate the crystal environment (spatially), and whose photoactivation can rapidly (temporally) trigger the reaction in a controlled manner. Our recently published results on a ligand-mixing experiment using time-resolved X-ray crystallography (TRX) with an X-ray free electron laser (XFEL) demonstrated that large conformational changes upon ligand binding resulted in a solid-to-solid phase transition (SSPT), while maintaining Bragg diffraction. Here we investigate this SSPT by polarized video microscopy (PVM) after light-triggered release of a photo-caged adenine (pcADE). In general, the mean transition times and transition widths of the SSPT were less dependent on crystal size than what was observed in previous PVM studies with direct ADE mixing. Instead, the photo-induced transition appears to be heavily influenced by the equilibrium between caged and uncaged ADE due to relatively low sample exposure and uncaging efficiency. Nevertheless, we successfully demonstrate a method for the characterization of phase transitions in RNA crystals that are inducible with a photocaged ligand. The transition data for three crystals of different sizes were then applied to kinetic analysis by fitting to the known four-state model associated with ligand-induced conformational changes, revealing an apparent concentration of uncaged ADE in crystal of 0.43-0.46 mM. These results provide further insight into approaches to study time-resolved ligand-induced conformational changes in crystals, and in particular, highlight the feasibility of triggering phase transitions using a light-inducible system. Developing such approaches may be paramount for the rapidly emerging field of time-resolved crystallography.

9.
Curr Biol ; 31(22): 4923-4934.e5, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34610275

ABSTRACT

In most tetrapod vertebrates, limb skeletal progenitors condense with postaxial dominance. Posterior elements (such as ulna and fibula) appear prior to their anterior counterparts (radius and tibia), followed by digit-appearance order with continuing postaxial polarity. The only exceptions are urodele amphibians (salamanders), whose limb elements develop with preaxial polarity and who are also notable for their unique ability to regenerate complete limbs as adults. The mechanistic basis for this preaxial dominance has remained an enigma and has even been proposed to relate to the acquisition of novel genes involved in regeneration. However, recent fossil evidence suggests that preaxial polarity represents an ancestral rather than derived state. Here, we report that 5'Hoxd (Hoxd11-d13) gene deletion in mouse is atavistic and uncovers an underlying preaxial polarity in mammalian limb formation. We demonstrate this shift from postaxial to preaxial dominance in mouse results from excess Gli3 repressor (Gli3R) activity due to the loss of 5'Hoxd-Gli3 antagonism and is associated with cell-cycle changes promoting precocious cell-cycle exit in the anterior limb bud. We further show that Gli3 knockdown in axolotl results in a shift to postaxial dominant limb skeleton formation, as well as expanded paddle-shaped limb-bud morphology and ensuing polydactyly. Evolutionary changes in Gli3R activity level, which also played a key role in the fin-to-limb transition, appear to be fundamental to the shift from preaxial to postaxial polarity in formation of the tetrapod limb skeleton.


Subject(s)
Extremities , Limb Buds , Animals , Biological Evolution , Extremities/anatomy & histology , Mammals , Mice , Transcription Factors/genetics , Urodela/anatomy & histology
10.
J Appl Crystallogr ; 54(Pt 3): 787-796, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34194289

ABSTRACT

Solid-solid phase transitions (SSPTs) are widespread naturally occurring phenomena. Understanding the molecular mechanisms and kinetics of SSPTs in various crystalline materials, however, has been challenging due to technical limitations. In particular, SSPTs in biomacromolecular crystals, which may involve large-scale changes and particularly complex sets of interactions, are largely unexplored, yet may have important implications for time-resolved crystallography and for developing synthetic biomaterials. The adenine riboswitch (riboA) is an RNA control element that uses ligand-induced conformational changes to regulate gene expression. Crystals of riboA, upon the addition of a ligand, undergo an SSPT from monoclinic to triclinic to orthorhombic. Here, solution atomic force microscopy (AFM) and polarized video microscopy (PVM) are used to characterize the multiple transition states throughout the SSPT in both the forward and the reverse directions. This contribution describes detailed protocols for growing crystals directly on mica or glass surfaces for AFM and PVM characterization, respectively, as well as methods for image processing and phase-transition kinetics analysis.

11.
Struct Dyn ; 8(3): 034301, 2021 May.
Article in English | MEDLINE | ID: mdl-34235229

ABSTRACT

Solid-solid phase transitions (SSPTs) have been widely observed in crystals of organic or inorganic small-molecules. Although SSPTs in macromolecular crystals have been reported, the majority involve local atomic changes, such as those induced by changes in hydration. SSPTs driven by large conformational changes, however, can be more difficult to characterize since they often significantly disrupt lattice packing interactions. Such drastic changes make the cooperativity of molecular motion at the atomic level less easily achieved and more dependent on intrinsic properties of the crystal that define lattice order. Here, we investigate the effect of crystal size on the uniformity of SSPT in thin plate-like crystals of the adenine riboswitch aptamer RNA (riboA) by monitoring changes in crystal birefringence upon the diffusion of adenine ligand. The birefringence intensity is directly related to molecular order and the concurrent changes to polarizability of molecules that results from structural changes throughout the phase transition. The riboA crystals were loosely grouped into three categories (small, medium, and large) based on the surface area of the crystal plates. The time width of transition increased as a function of crystal size, ranging from ∼13 s for small crystals to ∼40 s for the largest crystal. Whereas the transitions in small crystals (<10 µm2) were mostly uniform throughout, the medium and large crystals exhibited large variations in the time and width of the transition peak depending on the region of the crystal being analyzed. Our study provides insight into the spatiotemporal behavior of phase transitions in crystals of biological molecules and is of general interest to time-resolved crystallographic studies, where the kinetics of conformational changes may be governed by the kinetics of an associated SSPT.

12.
IUCrJ ; 8(Pt 4): 655-664, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34258013

ABSTRACT

Solid-solid phase transitions (SSPTs) occur between distinguishable crystalline forms. Because of their importance in application and theory in materials science and condensed-matter physics, SSPTs have been studied most extensively in metallic alloys, inorganic salts and small organic molecular crystals, but much less so in biomacromolecular crystals. In general, the mechanisms of SSPTs at the atomic and molecular levels are not well understood. Here, the ordered molecular rearrangements in biomacromolecular crystals of the adenine riboswitch aptamer are described using real-time serial crystallography and solution atomic force microscopy. Large, ligand-induced conformational changes drive the initial phase transition from the apo unit cell (AUC) to the trans unit cell 1 (TUC1). During this transition, coaxial stacking of P1 duplexes becomes the dominant packing interface, whereas P2-P2 interactions are almost completely disrupted, resulting in 'floating' layers of molecules. The coupling points in TUC1 and their local conformational flexibility allow the molecules to reorganize to achieve the more densely packed and energetically favorable bound unit cell (BUC). This study thus reveals the interplay between the conformational changes and the crystal phases - the underlying mechanism that drives the phase transition. Using polarized video microscopy to monitor SSPTs in small crystals at high ligand concentration, the time window during which the major conformational changes take place was identified, and the in crystallo kinetics have been simulated. Together, these results provide the spatiotemporal information necessary for informing time-resolved crystallography experiments. Moreover, this study illustrates a practical approach to characterization of SSPTs in transparent crystals.

13.
Commun Biol ; 4(1): 477, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859337

ABSTRACT

The tumor microenvironment (TME) is multi-cellular, spatially heterogenous, and contains cell-generated gradients of soluble molecules. Current cell-based model systems lack this complexity or are difficult to interrogate microscopically. We present a 2D live-cell chamber that approximates the TME and demonstrate that breast cancer cells and macrophages generate hypoxic and nutrient gradients, self-organize, and have spatially varying phenotypes along the gradients, leading to new insights into tumorigenesis.


Subject(s)
Breast Neoplasms/physiopathology , Carcinogenesis , Macrophages/physiology , Tumor Cells, Cultured/physiology , Tumor Microenvironment , Animals , Cell Culture Techniques , Mice
14.
Nat Commun ; 12(1): 1762, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741910

ABSTRACT

Time-resolved studies of biomacromolecular crystals have been limited to systems involving only minute conformational changes within the same lattice. Ligand-induced changes greater than several angstroms, however, are likely to result in solid-solid phase transitions, which require a detailed understanding of the mechanistic interplay between conformational and lattice transitions. Here we report the synchronous behavior of the adenine riboswitch aptamer RNA in crystal during ligand-triggered isothermal phase transitions. Direct visualization using polarized video microscopy and atomic force microscopy shows that the RNA molecules undergo cooperative rearrangements that maintain lattice order, whose cell parameters change distinctly as a function of time. The bulk lattice order throughout the transition is further supported by time-resolved diffraction data from crystals using an X-ray free electron laser. The synchronous molecular rearrangements in crystal provide the physical basis for studying large conformational changes using time-resolved crystallography and micro/nanocrystals.


Subject(s)
Nucleic Acid Conformation , Phase Transition , RNA/chemistry , Riboswitch , Adenine/chemistry , Aptamers, Nucleotide/chemistry , Crystallography, X-Ray , Microscopy, Atomic Force/methods , Microscopy, Polarization/methods , Models, Molecular , Time-Lapse Imaging/methods
15.
Nucleic Acids Res ; 49(6): e35, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33406226

ABSTRACT

Just as eukaryotic circular RNA (circRNA) is a product of intracellular backsplicing, custom circRNA can be synthesized in vitro using a transcription template in which transposed halves of a split group I intron flank the sequence of the RNA to be circularized. Such permuted intron-exon (PIE) constructs have been used to produce circRNA versions of ribozymes, mimics of viral RNA motifs, a streptavidin aptamer, and protein expression vectors for genetic engineering and vaccine development. One limitation of this approach is the obligatory incorporation of small RNA segments (E1 and E2) into nascent circRNA at the site of end-joining. This restriction may preclude synthesis of small circRNA therapeutics and RNA nanoparticles that are sensitive to extraneous sequence, as well as larger circRNA mimics whose sequences must precisely match those of the native species on which they are modelled. In this work, we used serial mutagenesis and in vitro selection to determine how varying E1 and E2 sequences in a thymidylate synthase (td) group I intron PIE transcription template construct affects circRNA synthesis yield. Based on our collective findings, we present guidelines for the design of custom-tailored PIE transcription templates from which synthetic circRNAs of almost any sequence may be efficiently synthesized.


Subject(s)
RNA, Circular/chemical synthesis , Base Sequence , Exons , Humans , Introns , Mutagenesis , Mutation , Nucleic Acid Conformation , RNA, Circular/chemistry
16.
Nanoscale ; 12(4): 2555-2568, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31932830

ABSTRACT

Using RNA as a material for nanoparticle construction provides control over particle size and shape at the nano-scale. RNA nano-architectures have shown promise as delivery vehicles for RNA interference (RNAi) substrates, allowing multiple functional entities to be combined on a single particle in a programmable fashion. Rather than employing a completely bottom-up approach to scaffold design, here multiple copies of an existing synthetic supramolecular RNA nano-architecture serve as building blocks along with additional motifs for the design of a novel truncated tetrahedral RNA scaffold, demonstrating that rationally designed RNA assemblies can themselves serve as modular pieces in the construction of larger rationally designed structures. The resulting tetrahedral scaffold displays enhanced characteristics for RNAi-substrate delivery in comparison to similar RNA-based scaffolds, as evidenced by its increased functional capacity, increased cellular uptake and ultimately an increased RNAi efficacy of its adorned Dicer substrate siRNAs. The unique truncated tetrahedral shape of the nanoparticle core appears to contribute to this particle's enhanced function, indicating the physical characteristics of RNA scaffolds merit significant consideration when designing platforms for delivery of functional RNAs via RNA nanoparticles.


Subject(s)
DEAD-box RNA Helicases/chemistry , Nanostructures/chemistry , RNA Interference , RNA/chemistry , Ribonuclease III/chemistry , Cell Cycle Proteins/chemistry , Cell Line, Tumor , Cryoelectron Microscopy , Green Fluorescent Proteins/chemistry , Humans , Light , Molecular Dynamics Simulation , Nucleic Acid Conformation , Particle Size , Polymerase Chain Reaction , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Proto-Oncogene Proteins/chemistry , RNA, Small Interfering , Scattering, Radiation , Software , Thermodynamics , Polo-Like Kinase 1
17.
Redox Biol ; 28: 101354, 2020 01.
Article in English | MEDLINE | ID: mdl-31683257

ABSTRACT

The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2-/- mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.


Subject(s)
Cytokines/metabolism , Lipopolysaccharides/adverse effects , Nitric Oxide Synthase Type II/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic/drug effects , Macrophages/drug effects , Macrophages/immunology , Mice , Neoplasm Transplantation , Nitric Oxide/metabolism , Single-Cell Analysis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
18.
Cell Chem Biol ; 26(8): 1133-1142.e4, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31155509

ABSTRACT

Identification of RNA-interacting pharmacophores could provide chemical probes and, potentially, small molecules for RNA-based therapeutics. Using a high-throughput differential scanning fluorimetry assay, we identified small-molecule natural products with the capacity to bind the discrete stem-looped structure of pre-miR-21. The most potent compound identified was a prodiginine-type compound, butylcycloheptyl prodiginine (bPGN), with the ability to inhibit Dicer-mediated processing of pre-miR-21 in vitro and in cells. Time-dependent RT-qPCR, western blot, and transcriptomic analyses showed modulation of miR-21 expression and its target genes such as PDCD4 and PTEN upon treatment with bPGN, supporting on-target inhibition. Consequently, inhibition of cellular proliferation in HCT-116 colorectal cancer cells was also observed when treated with bPGN. The discovery that bPGN can bind and modulate the expression of regulatory RNAs such as miR-21 helps set the stage for further development of this class of natural product as a molecular probe or therapeutic agent against miRNA-dependent diseases.


Subject(s)
Biological Products/pharmacology , MicroRNAs/antagonists & inhibitors , Prodigiosin/analogs & derivatives , Binding Sites/drug effects , Biological Products/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , HCT116 Cells , Humans , MicroRNAs/metabolism , Molecular Structure , Optical Imaging , Prodigiosin/chemistry , Prodigiosin/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
19.
Nanoscale ; 11(24): 11584-11595, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31169858

ABSTRACT

Until recently, the number of emission colors available from fluorescent diamond particles was primarily limited to red to near-infrared fluorescence from the nitrogen-vacancy color center in type Ib synthetic diamond and green fluorescence associated with the nitrogen-vacancy-nitrogen center in type Ia natural diamond. Using our recently reported rapid thermal annealing technique, we demonstrate the capability of producing fluorescent diamond particles that exhibit distinctive blue, green, yellow, and red fluorescence from the same synthetic diamond starting material. Utilizing these multiple colored diamonds, we analyze their fluorescence characteristics both in-solution as well as on-substrate and additionally evaluate their viability in simple multiplex imaging and cellular bioimaging experiments. While there are still challenges associated with their immediate use in traditional multiplex imaging, this novel approach opens new opportunities to enhance the capability and flexibility of fluorescent diamond particles at the nanoscale.

20.
Nucleic Acids Res ; 47(8): 3970-3985, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30843055

ABSTRACT

RNA polymerase (RNAP), the transcription machinery, shows dynamic binding across the genomic DNA under different growth conditions. The genomic features that selectively redistribute the limited RNAP molecules to dictate genome-wide transcription in response to environmental cues remain largely unknown. We chose the bacterial osmotic stress response model to determine genomic features that direct genome-wide redistribution of RNAP during the stress. Genomic mapping of RNAP and transcriptome profiles corresponding to the different temporal states after salt shock were determined. We found rapid redistribution of RNAP across the genome, primarily at σ70 promoters. Three subsets of genes exhibiting differential salt sensitivities were identified. Sequence analysis using an information-theory based σ70 model indicates that the intergenic regions of salt-responsive genes are enriched with a higher density of σ70 promoter-like sites than those of salt-sensitive genes. In addition, the density of promoter-like sites has a positive linear correlation with RNAP binding at different salt concentrations. The RNAP binding contributed by the non-initiating promoter-like sites is important for gene transcription at high salt concentration. Our study demonstrates that hyperdensity of σ70 promoter-like sites in the intergenic regions of salt-responsive genes drives the RNAP redistribution for reprograming the transcriptome to counter osmotic stress.


Subject(s)
DNA, Bacterial/genetics , DNA, Intergenic/genetics , DNA-Directed RNA Polymerases/genetics , Escherichia coli/drug effects , Gene Expression Regulation, Bacterial , Potassium Chloride/pharmacology , Sigma Factor/genetics , Culture Media/chemistry , Culture Media/pharmacology , DNA, Bacterial/metabolism , DNA, Intergenic/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Information Theory , Models, Genetic , Osmotic Pressure , Promoter Regions, Genetic , Salinity , Sigma Factor/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...