Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Commun Biol ; 7(1): 589, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755249

ABSTRACT

The hepatic acute-phase response is characterized by a massive upregulation of serum proteins, such as haptoglobin and serum amyloid A, at the expense of liver homeostatic functions. Although the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has a well-established role in safeguarding liver function and its cistrome spans around 50% of liver-specific genes, its role in the acute-phase response has received little attention so far. We demonstrate that HNF4A binds to and represses acute-phase genes under basal conditions. The reprogramming of hepatic transcription during inflammation necessitates loss of HNF4A function to allow expression of acute-phase genes while liver homeostatic genes are repressed. In a pre-clinical liver organoid model overexpression of HNF4A maintained liver functionality in spite of inflammation-induced cell damage. Conversely, HNF4A overexpression potently impaired the acute-phase response by retaining chromatin at regulatory regions of acute-phase genes inaccessible to transcription. Taken together, our data extend the understanding of dual HNF4A action as transcriptional activator and repressor, establishing HNF4A as gatekeeper for the hepatic acute-phase response.


Subject(s)
Acute-Phase Reaction , Hepatocyte Nuclear Factor 4 , Liver , Transcriptome , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Acute-Phase Reaction/genetics , Acute-Phase Reaction/metabolism , Animals , Liver/metabolism , Mice , Down-Regulation , Humans , Mice, Inbred C57BL , Male , Gene Expression Regulation
2.
Pharmaceutics ; 16(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38675165

ABSTRACT

The effective pharmacological treatment of inflamed wounds such as pyoderma gangraenosum remains challenging, as the systemic application of suitable drugs such as glucocorticoids is compromised by severe side effects and the inherent difficulties of wounds as drug targets. Furthermore, conventional semi-solid formulations are not suitable for direct application to open wounds. Thus, the treatment of inflamed wounds could considerably benefit from the development of active wound dressings for the topical administration of anti-inflammatory drugs. Although bacterial cellulose appears to be an ideal candidate for this purpose due to its known suitability for advanced wound care and as a drug delivery system, the incorporation of poorly water-soluble compounds into the hydrophilic material still poses a problem. The use of microemulsions could solve that open issue. The present study therefore explores their use as a novel approach to incorporate poorly water-soluble glucocorticoids into bacterial cellulose. Five microemulsion formulations were loaded with hydrocortisone or dexamethasone and characterized in detail, demonstrating their regular microstructure, biocompatibility and shelf-life stability. Bacterial cellulose was successfully loaded with the formulations as confirmed by transmission electron microscopy and surprisingly showed homogenous incorporation, even of w/o type microemulsions. High and controllable drug permeation through Strat-M® membranes was observed, and the anti-inflammatory activity for permeated glucocorticoids was confirmed in vitro. This study presents a novel approach for the development of anti-inflammatory wound dressings using bacterial cellulose in combination with microemulsions.

3.
iScience ; 27(2): 108943, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38333702

ABSTRACT

Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.

4.
Pharmaceutics ; 15(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38140000

ABSTRACT

RNA interference can be applied to different target genes for treating a variety of diseases, but an appropriate delivery system is necessary to ensure the transport of intact siRNAs to the site of action. In this study, cellulose was dually modified to create a non-viral vector for HDAC3 short interfering RNA (siRNA) transfer into cells. A guanidinium group introduced positive charges into the cellulose to allow complexation of negatively charged genetic material. Furthermore, a biotin group fixed by a polyethylene glycol (PEG) spacer was attached to the polymer to allow, if required, the binding of targeting ligands. The resulting polyplexes with HDAC3 siRNA had a size below 200 nm and a positive zeta potential of up to 15 mV. For N/P ratio 2 and higher, the polymer could efficiently complex siRNA. Nanoparticles, based on this dually modified derivative, revealed a low cytotoxicity. Only minor effects on the endothelial barrier integrity and a transfection efficiency in HEK293 cells higher than Lipofectamine 2000TM were found. The uptake and release of the polyplexes were confirmed by immunofluorescence imaging. This study indicates that the modified biopolymer is an auspicious biocompatible non-viral vector with biotin as a promising moiety.

5.
Proc Natl Acad Sci U S A ; 120(35): e2302070120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603745

ABSTRACT

Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.


Subject(s)
COVID-19 , Glucocorticoids , Humans , Glucocorticoids/pharmacology , Arachidonate 15-Lipoxygenase/genetics , Inflammation , Dexamethasone/pharmacology , Lipids
6.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569823

ABSTRACT

Sepsis is a life-threatening medical emergency triggered by excessive inflammation in response to an infection. High mortality rates and limited therapeutic options pose significant challenges in sepsis treatment. Histone deacetylase inhibitors (HDACi), such as suberoylanilide hydroxamic acid (SAHA), have been proposed as potent anti-inflammatory agents for treating inflammatory diseases. However, the underlying mechanisms of sepsis treatment remain poorly understood. In this study, we investigated the effects of SAHA treatment in the lipopolysaccharide (LPS)-induced endotoxemia mouse model as it closely mimics the early stages of the systemic inflammation of sepsis. Our results demonstrate a reduced inflammatory mediator secretion and improved survival rates in mice. Using quantitative acetylomics, we found that SAHA administration increases the acetylation of lactate dehydrogenase (LDHA), and consequently inhibits LDHA activity. Notably, the reduced enzyme activity of LDHA results in a reduced rate of glycolysis. Furthermore, our experiments with bone marrow-derived macrophages (BMDMs) show that SAHA administration reduced oxidative stress and extracellular ATP concentrations, ultimately blunting inflammasome activation. Overall, our study provides insights into the mechanism underlying SAHA's therapeutic effects in sepsis treatment and highlights LDHA as a potential target for developing novel sepsis treatment.


Subject(s)
Endotoxemia , Sepsis , Animals , Mice , Vorinostat/pharmacology , Vorinostat/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Endotoxemia/drug therapy , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Sepsis/drug therapy
7.
Methods Mol Biol ; 2589: 129-144, 2023.
Article in English | MEDLINE | ID: mdl-36255622

ABSTRACT

Systemic administration of histone deacetylase inhibitors (HDACi), like valproic acid (VPA), is often associated with rapid drug metabolization and untargeted tissue distribution. This requires high-dose application that can lead to unintended side effects. Hence, drug carrier systems such as nanoparticles (NPs) are developed to circumvent these disadvantages by enhancing serum half-life as well as organ specificity.This chapter gives a summary of the biological characterization of HDACi-coupled NPs in vitro, including investigation of cellular uptake, biocompatibility, as well as intracellular drug release and activity. Suitable methods, opportunities, and challenges will be discussed to provide general guidelines for the analysis of HDACi drug carrier systems with a special focus on recently developed cellulose-based VPA-coupled NPs.


Subject(s)
Histone Deacetylase Inhibitors , Nanoparticles , Histone Deacetylase Inhibitors/pharmacology , Valproic Acid/pharmacology , Drug Carriers , Cellulose
8.
Methods Mol Biol ; 2589: 195-205, 2023.
Article in English | MEDLINE | ID: mdl-36255626

ABSTRACT

The ability of histone deacetylase inhibitors (HDACi) like valproic acid (VPA) as a therapeutic for inflammatory diseases or cancer has increased the interest in HDACi and their targeted transport to diseased tissues. Administration of VPA immobilized on polymeric carriers was found to be a suitable approach to circumvent drawbacks such as rapid metabolization, short serum half-life, or side effects. Polysaccharides are convenient biopolymeric carriers due to their biocompatibility and biodegradability. Furthermore, the hydroxy-, amino-, or carboxylic groups are predestinated for functionalization. The esterification of three hydroxy groups of cellulose with VPA leads to products having a high amount of VPA loading. Subsequent shaping yielded uniform nanoparticles (NPs) of around 150 nm in size capable of releasing VPA in a controlled way under physiological conditions.


Subject(s)
Histone Deacetylase Inhibitors , Nanoparticles , Histone Deacetylase Inhibitors/pharmacology , Valproic Acid/pharmacology , Cellulose
9.
Cancer Metab ; 10(1): 10, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35787728

ABSTRACT

BACKGROUND: Metabolic adaptations can allow cancer cells to survive DNA-damaging chemotherapy. This unmet clinical challenge is a potential vulnerability of cancer. Accordingly, there is an intense search for mechanisms that modulate cell metabolism during anti-tumor therapy. We set out to define how colorectal cancer CRC cells alter their metabolism upon DNA replication stress and whether this provides opportunities to eliminate such cells more efficiently. METHODS: We incubated p53-positive and p53-negative permanent CRC cells and short-term cultured primary CRC cells with the topoisomerase-1 inhibitor irinotecan and other drugs that cause DNA replication stress and consequently DNA damage. We analyzed pro-apoptotic mitochondrial membrane depolarization and cell death with flow cytometry. We evaluated cellular metabolism with immunoblotting of electron transport chain (ETC) complex subunits, analysis of mitochondrial mRNA expression by qPCR, MTT assay, measurements of oxygen consumption and reactive oxygen species (ROS), and metabolic flux analysis with the Seahorse platform. Global metabolic alterations were assessed using targeted mass spectrometric analysis of extra- and intracellular metabolites. RESULTS: Chemotherapeutics that cause DNA replication stress induce metabolic changes in p53-positive and p53-negative CRC cells. Irinotecan enhances glycolysis, oxygen consumption, mitochondrial ETC activation, and ROS production in CRC cells. This is connected to increased levels of electron transport chain complexes involving mitochondrial translation. Mass spectrometric analysis reveals global metabolic adaptations of CRC cells to irinotecan, including the glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways. P53-proficient CRC cells, however, have a more active metabolism upon DNA replication stress than their p53-deficient counterparts. This metabolic switch is a vulnerability of p53-positive cells to irinotecan-induced apoptosis under glucose-restricted conditions. CONCLUSION: Drugs that cause DNA replication stress increase the metabolism of CRC cells. Glucose restriction might improve the effectiveness of classical chemotherapy against p53-positive CRC cells. The topoisomerase-1 inhibitor irinotecan and other chemotherapeutics that cause DNA damage induce metabolic adaptations in colorectal cancer (CRC) cells irrespective of their p53 status. Irinotecan enhances the glycolysis and oxygen consumption in CRC cells to deliver energy and biomolecules necessary for DNA repair and their survival. Compared to p53-deficient cells, p53-proficient CRC cells have a more active metabolism and use their intracellular metabolites more extensively. This metabolic switch creates a vulnerability to chemotherapy under glucose-restricted conditions for p53-positive cells.

10.
Mol Oncol ; 15(12): 3404-3429, 2021 12.
Article in English | MEDLINE | ID: mdl-34258881

ABSTRACT

Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via post-translational modifications (PTMs). While the relevance of p53 C-terminal acetylation for transcriptional regulation is well defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of histone deacetylases (HDACs) with the class I HDAC inhibitor entinostat synergistically triggers mitochondrial damage and apoptosis in irinotecan-treated p53-positive CRC cells. This specifically relies on the C-terminal acetylation of p53 by CREB-binding protein/p300 and the presence of C-terminally acetylated p53 in complex with the proapoptotic BCL2 antagonist/killer protein. This control of C-terminal acetylation by HDACs can mechanistically explain why combinations of irinotecan and entinostat represent clinically tractable agents for the therapy of p53-proficient CRC.


Subject(s)
Colorectal Neoplasms , Tumor Suppressor Protein p53 , Acetylation , Animals , Apoptosis , Benzamides , Colorectal Neoplasms/drug therapy , Humans , Irinotecan/pharmacology , Mice , Pyridines , Tumor Suppressor Protein p53/metabolism
11.
RSC Adv ; 11(31): 18748-18756, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34046176

ABSTRACT

Targeted HRMS2-GNPS-based metabolomic analysis of Pseudoxylaria sp. X187, a fungal antagonist of the fungus-growing termite symbiosis, resulted in the identification of two lipopeptidic congeners of xylacremolides, named xylacremolide C and D, which are built from d-phenylalanine, l-proline and an acetyl-CoA starter unit elongated by four malonyl-CoA derived ketide units. The putative xya gene cluster was identified from a draft genome generated by Illumina and PacBio sequencing and RNAseq studies. Biological activities of xylacremolide A and B were evaluated and revealed weak histone deacetylase inhibitory (HDACi) and antifungal activities, as well as moderate protease inhibition activity across a panel of nine human, viral and bacterial proteases.

12.
Cytokine ; 144: 155552, 2021 08.
Article in English | MEDLINE | ID: mdl-34000478

ABSTRACT

The seven signal transducers of transcription (STATs) are cytokine-inducible modular transcription factors. They transmit the stimulation of cells with type I interferons (IFN-α/IFN-ß) and type II interferon (IFN-É£) into altered gene expression patterns. The N-terminal domain (NTD) of STAT1 is a surface for STAT1/STAT1 homodimer and STAT1/STAT2 heterodimer formation and allows the cooperative DNA binding of STAT1. We investigated whether the STAT1 NTD-mediated dimerization affected the IFN-induced tyrosine phosphorylation of STAT1, its nuclear translocation, STAT1-dependent gene expression, and IFN-dependent antiviral defense. We reconstituted human STAT1-negative and STAT2-negative fibrosarcoma cells with STAT1, NTD-mutated STAT1 (STAT1AA), STAT1 with a mutated DNA-binding domain (DBD), or STAT2. We treated these cells with IFN-α and IFN-É£ to assess differences between IFN-α-induced STAT1 homo- and heterodimers and IFN-É£-induced STAT1 homodimers. Our data demonstrate that IFNs induce the phosphorylation of STAT1 and STAT1AA at Y701 and their nuclear accumulation. We further reveal that STAT1AA can be phosphorylated in response to IFN-α in the absence of STAT2 and that IFN-É£-induced STAT1AA can activate gene expression directly. However, STAT1AA largely fails to bind STAT2 and to activate IFN-α-induced expression of endogenous antiviral STAT1/STAT2 target proteins. Congruent herewith, both an intact STAT1 NTD and STAT2 are indispensable to establish an antiviral state with IFN-α. These data provide new insights into the biological importance of the STAT1 NTD.


Subject(s)
Interferon Type I/metabolism , Interferon-gamma/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction/physiology , Antiviral Agents/metabolism , Cell Line , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Phosphorylation/physiology , Protein Transport/physiology , STAT2 Transcription Factor/metabolism
13.
Int J Pharm ; 601: 120567, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33812975

ABSTRACT

Inflammatory diseases like sepsis are associated with dysregulated gene expression, often caused by an imbalance of epigenetic regulators, such as histone acetyltransferases (HATs) and histone deacetylases (HDACs), and consequently, altered epigenetic chromatin signatures or aberrant posttranslational modifications of signalling proteins and transcription factors. Thus, HDAC inhibitors (HDACi) are a promising class of anti-inflammatory drugs. Recently, an efficient drug delivery system carrying the class I/IIa selective HDACi valproic acid (VPA) was developed to circumvent common disadvantages of free drug administration, e.g. short half-life and side effects. The cellulose-based sulphated VPA-coupled (CV-S) nanoparticles (NPs) are rapidly taken up by cells, do not cause any toxic effects and are fully biocompatible. Importantly, VPA is intracellularly cleaved from the NPs and HDACi activity could be proven. Here, we demonstrate that CV-S NPs exhibit overall anti-inflammatory effects in primary human macrophages and are able to attenuate the lipopolysaccharide-induced inflammatory response. CV-S NPs show superior potential to free VPA to suppress the TLR-MyD88-NF-κB signalling axis, leading to decreased TNF-α expression and secretion.


Subject(s)
Nanoparticles , Valproic Acid , Histone Deacetylase Inhibitors/pharmacology , Humans , Inflammation/drug therapy , Lipopolysaccharides
14.
J Control Release ; 329: 717-730, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33031880

ABSTRACT

The development of bio-based nanoparticles (NPs) as drug containers is of increasing interest to circumvent several obstacles in drug therapy such as rapid drug metabolization, short serum half-life, and unspecific side effects. The histone deacetylase inhibitor valproic acid (VPA) is known for its anti-inflammatory as well as for its anti-cancer activity. Here, recently developed VPA-loaded NPs based on cellulose- and dextran VPA esters were modified with sulfuric acid half ester moieties to improve intracellular drug release. The NPs show rapid cellular uptake, are non-toxic in vitro and in vivo, and able to induce histone H3 hyperacetylation. Thus, they represent a potent drug delivery system for the application in a variety of treatment settings, such as inflammation, sepsis and defined cancer types. In addition, the flexible NP-system offers a broad range of further options for modification, e.g. for targeting strategies and multi-drug approaches.


Subject(s)
Sulfates , Valproic Acid , Histone Deacetylase Inhibitors , Histones , Polysaccharides
15.
Macromol Biosci ; 20(6): e2000039, 2020 06.
Article in English | MEDLINE | ID: mdl-32249554

ABSTRACT

The histone deacetylase inhibitors (HDACi) are potent drugs in the treatment of inflammatory diseases and defined cancer types. However, major drawbacks of HDACi, such as valproic acid (VPA), are limited serum half-life, side effects and the short circulation time. Thus, the immobilization of VPA in a polysaccharide matrix is used to circumvent these problems and to design a suitable nanocarrier system. Therefore, VPA is covalently attached to cellulose and dextran via esterification with degree of substitution (DS) values of up to 2.20. The resulting hydrophobic polymers are shaped to spherical nanoparticles (NPs) with hydrodynamic diameter between 138 to 221 nm and polydispersity indices from 0.064 to 0.094 by nanoprecipitation and emulsification technique. Lipase treatment of the NPs leads to in vitro release of VPA and hence to an inhibition of HDAC2 activity in a HDAC2 assay. NPs are rapidly taken up by HeLa cells and mainly localize in the cytoplasm. The NPs are hemocompatible and nontoxic as revealed by the shell-less hen's egg model.


Subject(s)
Drug Carriers , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors , Nanoparticles , Polysaccharides , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HEK293 Cells , HeLa Cells , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Polysaccharides/chemistry , Polysaccharides/pharmacokinetics , Polysaccharides/pharmacology
16.
Elife ; 72018 10 12.
Article in English | MEDLINE | ID: mdl-30311911

ABSTRACT

The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model, we aim understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. Using genome-wide ChIP-seq analysis of acetylated histone H3, we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, in amino acid and nitrogen metabolism, in signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species.


Subject(s)
Aspergillus nidulans/metabolism , Chromatin/metabolism , Fungal Proteins/metabolism , Secondary Metabolism , Streptomyces/metabolism , Acetylation , Aspergillus nidulans/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Ontology , Genome, Fungal , Histidine/metabolism , Histones/metabolism , Lysine/metabolism , Mitochondria/metabolism , Multigene Family , Nitrogen/metabolism , Phylogeny , Signal Transduction , Transcription Factors/metabolism
17.
Oncotarget ; 9(45): 27835-27850, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29963241

ABSTRACT

Irinotecan (CPT-11) and oxaliplatin (L-OHP) are among the most frequently used drugs against colorectal tumors. Therefore, it is important to define the molecular mechanisms that these agents modulate in colon cancer cells. Here we demonstrate that CPT-11 stalls such cells in the G2/M phase of the cell cycle, induces an accumulation of the tumor suppressor p53, the replicative stress/DNA damage marker γH2AX, phosphorylation of the checkpoint kinases ATM and ATR, and an ATR-dependent accumulation of the pro-survival molecule survivin. L-OHP reduces the number of cells in S-phase, stalls cell cycle progression, transiently triggers an accumulation of low levels of γH2AX and phosphorylated checkpoint kinases, and L-OHP suppresses survivin expression at the mRNA and protein levels. Compared to CPT-11, L-OHP is a stronger inducer of caspases and p53-dependent apoptosis. Overexpression and RNAi against survivin reveal that this factor critically antagonizes caspase-dependent apoptosis in cells treated with CPT-11 and L-OHP. We additionally show that L-OHP suppresses survivin through p53 and its downstream target p21, which stalls cell cycle progression as a cyclin-dependent kinase inhibitor (CDKi). These data shed new light on the regulation of survivin by two clinically significant drugs and its biological and predictive relevance in drug-exposed cancer cells.

18.
Arch Toxicol ; 92(7): 2227-2243, 2018 07.
Article in English | MEDLINE | ID: mdl-29845424

ABSTRACT

Novel therapies are required for the treatment of metastatic renal cell carcinoma (RCC), which is associated with inoperable disease and patient death. Histone deacetylases (HDACs) are epigenetic modifiers and potential drug targets. Additional information on molecular pathways that are altered by histone deacetylase inhibitors (HDACi) in RCC cells is warranted. It should equally be delineated further which individual members of the 18 mammalian HDACs determine the survival and tumor-associated gene expression programs of such cells. Most importantly, an ongoing dispute whether HDACi promote or suppress metastasis-associated epithelial-to-mesenchymal transition (EMT) has to be resolved before HDACi are considered further as clinically relevant drugs. Here we show how HDACi affect murine and primary human RCC cells. We find that these agents induce morphological alterations resembling the metastasis-associated EMT. However, individual and proteomics-based analyses of epithelial and mesenchymal marker proteins and of EMT-associated transcription factors (EMT-TFs) reveal that HDACi do not trigger EMT. Pathway deconvolution analysis identifies reduced proliferation and apoptosis induction as key effects of HDACi. Furthermore, these drugs lead to a reduction of the cell adhesion molecule E-cadherin and of the platelet-derived growth factor receptor-ß (PDGFRß), which is a key driver of RCC metastasis formation. Accordingly, HDACi reduce the pulmonary spread of syngeneic transplanted renal carcinoma cells in mice. Specific genetic elimination of the histone deacetylases HDAC1/HDAC2 reflects the effects of pharmacological HDAC inhibition regarding growth suppression, apoptosis, and the downregulation of E-cadherin and PDGFRß. Thus, these epigenetic modifiers are non-redundant gatekeepers of cell fate and precise pharmacological targets.


Subject(s)
Carcinoma, Renal Cell/enzymology , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Kidney Neoplasms/enzymology , Animals , Apoptosis/drug effects , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
19.
Arch Toxicol ; 92(6): 2119-2135, 2018 06.
Article in English | MEDLINE | ID: mdl-29589053

ABSTRACT

A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.


Subject(s)
Apoptosis/drug effects , DNA Damage , Doxorubicin/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Hydroxyurea/pharmacology , WT1 Proteins/metabolism , Animals , Apoptosis/genetics , Caspases/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , DNA Replication/drug effects , Fallopian Tubes/drug effects , Female , Humans , K562 Cells , Mice, Knockout , Primary Cell Culture , WT1 Proteins/genetics
20.
Nat Commun ; 9(1): 764, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472538

ABSTRACT

Checkpoint kinases sense replicative stress to prevent DNA damage. Here we show that the histone deacetylases HDAC1/HDAC2 sustain the phosphorylation of the checkpoint kinases ATM, CHK1 and CHK2, activity of the cell cycle gatekeeper kinases WEE1 and CDK1, and induction of the tumour suppressor p53 in response to stalled DNA replication. Consequently, HDAC inhibition upon replicative stress promotes mitotic catastrophe. Mechanistically, HDAC1 and HDAC2 suppress the expression of PPP2R3A/PR130, a regulatory subunit of the trimeric serine/threonine phosphatase 2 (PP2A). Genetic elimination of PR130 reveals that PR130 promotes dephosphorylation of ATM by PP2A. Moreover, the ablation of PR130 slows G1/S phase transition and increases the levels of phosphorylated CHK1, replication protein A foci and DNA damage upon replicative stress. Accordingly, stressed PR130 null cells are very susceptible to HDAC inhibition, which abrogates the S phase checkpoint, induces apoptosis and reduces the homologous recombination protein RAD51. Thus, PR130 controls cell fate decisions upon replicative stress.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 2/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Protein Phosphatase 2/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 2/genetics , Gene Expression Regulation , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Phosphatase 2/genetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...