Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
2.
Chemistry ; 29(23): e202203967, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36799129

ABSTRACT

The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.


Subject(s)
Colorectal Neoplasms , Pyrazoles , Humans , Pyrazoles/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Cell Line , Colorectal Neoplasms/drug therapy , Cell Line, Tumor
3.
Drug Discov Today ; 27(2): 519-528, 2022 02.
Article in English | MEDLINE | ID: mdl-34728376

ABSTRACT

Selective chemical modulators are ideal tools to study the function of a protein. Yet, the poor ligandability of many proteins has hampered the development of specific chemical probes for numerous protein classes. Tools, such as covalent inhibitors and activity-based protein profiling, have enhanced our understanding of thus-far difficult-to-target proteins and have enabled correct assessment of the selectivity of small-molecule modulators. This also requires deeper knowledge of compound and target site reactivity, evaluation of binding to noncovalent targets and protein turnover. The availability of highly selective chemical probes, the evolution of activity-based probes, and the development of profiling methods will open a new era of drugging the undruggable proteome.


Subject(s)
Proteome , Proteolysis , Proteome/metabolism
4.
Bioorg Chem ; 119: 105505, 2022 02.
Article in English | MEDLINE | ID: mdl-34838332

ABSTRACT

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Gastrointestinal Neoplasms/drug therapy , Thalidomide/pharmacology , Thiazoles/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Humans , Molecular Structure , Structure-Activity Relationship , Thalidomide/chemical synthesis , Thalidomide/chemistry , Thiazoles/chemical synthesis , Thiazoles/chemistry , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/metabolism
5.
J Med Chem ; 64(15): 10682-10710, 2021 08 12.
Article in English | MEDLINE | ID: mdl-33980013

ABSTRACT

Histone H3K4 methylation serves as a post-translational hallmark of actively transcribed genes and is introduced by histone methyltransferase (HMT) and its regulatory scaffolding proteins. One of these is the WD-repeat-containing protein 5 (WDR5) that has also been associated with controlling long noncoding RNAs and transcription factors including MYC. The wide influence of dysfunctional HMT complexes and the typically upregulated MYC levels in diverse tumor types suggested WDR5 as an attractive drug target. Indeed, protein-protein interface inhibitors for two protein interaction interfaces on WDR5 have been developed. While such compounds only inhibit a subset of WDR5 interactions, chemically induced proteasomal degradation of WDR5 might represent an elegant way to target all oncogenic functions. This study presents the design, synthesis, and evaluation of two diverse WDR5 degrader series based on two WIN site binding scaffolds and shows that linker nature and length strongly influence degradation efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Dihydropyridines/pharmacology , Drug Design , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Cells, Cultured , Dihydropyridines/chemical synthesis , Dihydropyridines/chemistry , Dose-Response Relationship, Drug , Female , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Male , Molecular Structure , Structure-Activity Relationship
6.
Nat Chem Biol ; 16(11): 1179-1188, 2020 11.
Article in English | MEDLINE | ID: mdl-32989298

ABSTRACT

The mitotic kinase AURORA-A is essential for cell cycle progression and is considered a priority cancer target. Although the catalytic activity of AURORA-A is essential for its mitotic function, recent reports indicate an additional non-catalytic function, which is difficult to target by conventional small molecules. We therefore developed a series of chemical degraders (PROTACs) by connecting a clinical kinase inhibitor of AURORA-A to E3 ligase-binding molecules (for example, thalidomide). One degrader induced rapid, durable and highly specific degradation of AURORA-A. In addition, we found that the degrader complex was stabilized by cooperative binding between AURORA-A and CEREBLON. Degrader-mediated AURORA-A depletion caused an S-phase defect, which is not the cell cycle effect observed upon kinase inhibition, supporting an important non-catalytic function of AURORA-A during DNA replication. AURORA-A degradation induced rampant apoptosis in cancer cell lines and thus represents a versatile starting point for developing new therapeutics to counter AURORA-A function in cancer.


Subject(s)
Antineoplastic Agents/chemistry , Aurora Kinase A/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Proteolysis/drug effects , Thalidomide/chemistry , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/drug effects , Aurora Kinase A/genetics , Benzazepines/chemistry , Catalytic Domain , Cell Cycle/drug effects , Cell Line, Tumor , DNA Replication/drug effects , Drug Design , Female , Humans , Male , Molecular Targeted Therapy , Polyethylene Glycols/chemistry , Protein Binding , Protein Conformation
7.
Mol Cell Proteomics ; 19(10): 1649-1663, 2020 10.
Article in English | MEDLINE | ID: mdl-32651227

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.


Subject(s)
Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphoproteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proteomics , Radiation Tolerance , Actins/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Mice , Radiation Tolerance/drug effects , Reproducibility of Results , Signal Transduction/drug effects , Substrate Specificity/drug effects
8.
Nat Commun ; 11(1): 3639, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686665

ABSTRACT

Integrated analysis of genomes, transcriptomes, proteomes and drug responses of cancer cell lines (CCLs) is an emerging approach to uncover molecular mechanisms of drug action. We extend this paradigm to measuring proteome activity landscapes by acquiring and integrating quantitative data for 10,000 proteins and 55,000 phosphorylation sites (p-sites) from 125 CCLs. These data are used to contextualize proteins and p-sites and predict drug sensitivity. For example, we find that Progesterone Receptor (PGR) phosphorylation is associated with sensitivity to drugs modulating estrogen signaling such as Raloxifene. We also demonstrate that Adenylate kinase isoenzyme 1 (AK1) inactivates antimetabolites like Cytarabine. Consequently, high AK1 levels correlate with poor survival of Cytarabine-treated acute myeloid leukemia patients, qualifying AK1 as a patient stratification marker and possibly as a drug target. We provide an interactive web application termed ATLANTiC (http://atlantic.proteomics.wzw.tum.de), which enables the community to explore the thousands of novel functional associations generated by this work.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Proteome/metabolism , Adenylate Kinase/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Computational Biology , Computer Simulation , Cytarabine/metabolism , Cytarabine/pharmacology , Drug Development , Genomics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Neoplasms/metabolism , Proteome/genetics , Proteomics , Raloxifene Hydrochloride/metabolism , Raloxifene Hydrochloride/pharmacology , Receptors, Progesterone/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
9.
Nat Commun ; 11(1): 3583, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32681005

ABSTRACT

The phosphatases PP1 and PP2A are responsible for the majority of dephosphorylation reactions on phosphoserine (pSer) and phosphothreonine (pThr), and are involved in virtually all cellular processes and numerous diseases. The catalytic subunits exist in cells in form of holoenzymes, which impart substrate specificity. The contribution of the catalytic subunits to the recognition of substrates is unclear. By developing a phosphopeptide library approach and a phosphoproteomic assay, we demonstrate that the specificity of PP1 and PP2A holoenzymes towards pThr and of PP1 for basic motifs adjacent to the phosphorylation site are due to intrinsic properties of the catalytic subunits. Thus, we dissect this amino acid specificity of the catalytic subunits from the contribution of regulatory proteins. Furthermore, our approach enables discovering a role for PP1 as regulator of the GRB-associated-binding protein 2 (GAB2)/14-3-3 complex. Beyond this, we expect that this approach is broadly applicable to detect enzyme-substrate recognition preferences.


Subject(s)
Protein Phosphatase 1/chemistry , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Motifs , Catalytic Domain , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/metabolism , Humans , Phosphorylation , Protein Binding , Protein Engineering , Protein Phosphatase 1/genetics , Protein Phosphatase 2/genetics , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Substrate Specificity
10.
Front Microbiol ; 11: 111, 2020.
Article in English | MEDLINE | ID: mdl-32117137

ABSTRACT

The locus of heat resistance (LHR) confers extreme heat resistance in Escherichia coli. This study explored the role of the LHR in heat and pressure resistance of E. coli, as well as its relationship with protein folding and aggregation in vivo. The role of LHR was investigated in E. coli MG1655 and the pressure resistant E. coli LMM1010 expressing an ibpA-yfp fusion protein to visualize inclusion bodies by fluorescence microscopy. The expression of proteins by the LHR was determined by proteomic analysis; inclusion bodies of untreated and treated cells were also analyzed by proteomics, and by fluorescent microscopy. In total, 11 proteins of LHR were expressed: sHSP20, ClpKGI, sHSP, YdfX1 and YdfX2, HdeD, KefB, Trx, PsiE, DegP, and a hypothetical protein. The proteomic analysis of inclusion bodies revealed a differential abundance of proteins related to oxidative stress in strains carrying the LHR. The LHR reduced the presence of inclusion bodies after heat or pressure treatment, indicating that proteins expressed by the LHR prevent protein aggregation, or disaggregate proteins. This phenotype of the LHR was also conferred by expression of a fragment containing only sHSP20, ClpKGI, and sHSP. The LHR and the fragment encoding only sHSP20, ClpKGI, and sHSP also enhanced pressure resistance in E. coli MG1655 but had no effect on pressure resistance of E. coli LMM1010. In conclusion, the LHR confers pressure resistance to some strains of E. coli, and reduces protein aggregation. Pressure and heat resistance are also dependent on additional LHR-encoded functions.

11.
Oncotarget ; 11(5): 535-549, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32082487

ABSTRACT

Gastric cancer (GC) remains the third leading cause of cancer-related death despite several improvements in targeted therapy. There is therefore an urgent need to investigate new treatment strategies, including the identification of novel biomarkers for patient stratification. In this study, we evaluated the effect of FDA-approved kinase inhibitors on GC. Through a combination of cell growth, migration and invasion assays, we identified dasatinib as an efficient inhibitor of GC proliferation. Mass-spectrometry-based selectivity profiling and subsequent knockdown experiments identified members of the SRC family of kinases including SRC, FRK, LYN and YES, as well as other kinases such as DDR1, ABL2, SIK2, RIPK2, EPHA2, and EPHB2 as dasatinib targets. The expression levels of the identified kinases were investigated on RNA and protein level in 200 classified tumor samples from patients, who had undergone gastrectomy, but had received no treatment. Levels of FRK, DDR1 and SRC expression on both mRNA and protein level were significantly higher in metastatic patient samples regardless of the tumor stage, while expression levels of SIK2 correlated with tumor size. Collectively, our data suggest dasatinib for treatment of GC based on its unique property, inhibiting a small number of key kinases (SRC, FRK, DDR1 and SIK2), highly expressed in GC patients.

12.
Nat Commun ; 11(1): 157, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919466

ABSTRACT

Nano-flow liquid chromatography tandem mass spectrometry (nano-flow LC-MS/MS) is the mainstay in proteome research because of its excellent sensitivity but often comes at the expense of robustness. Here we show that micro-flow LC-MS/MS using a 1 × 150 mm column shows excellent reproducibility of chromatographic retention time (<0.3% coefficient of variation, CV) and protein quantification (<7.5% CV) using data from >2000 samples of human cell lines, tissues and body fluids. Deep proteome analysis identifies >9000 proteins and >120,000 peptides in 16 h and sample multiplexing using tandem mass tags increases throughput to 11 proteomes in 16 h. The system identifies >30,000 phosphopeptides in 12 h and protein-protein or protein-drug interaction experiments can be analyzed in 20 min per sample. We show that the same column can be used to analyze >7500 samples without apparent loss of performance. This study demonstrates that micro-flow LC-MS/MS is suitable for a broad range of proteomic applications.


Subject(s)
Chromatography, Liquid/methods , Proteome/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Cell Line, Tumor , HeLa Cells , Humans , Peptides/analysis
13.
Plant Cell ; 31(11): 2697-2710, 2019 11.
Article in English | MEDLINE | ID: mdl-31511315

ABSTRACT

Arabidopsis (Arabidopsis thaliana) efficiently synthesizes the antifungal phytoalexin camalexin without the apparent release of bioactive intermediates, such as indole-3-acetaldoxime, suggesting that the biosynthetic pathway of this compound is channeled by the formation of an enzyme complex. To identify such protein interactions, we used two independent untargeted coimmunoprecipitation (co-IP) approaches with the biosynthetic enzymes CYP71B15 and CYP71A13 as baits and determined that the camalexin biosynthetic P450 enzymes copurified with these enzymes. These interactions were confirmed by targeted co-IP and Förster resonance energy transfer measurements based on fluorescence lifetime microscopy (FRET-FLIM). Furthermore, the interaction of CYP71A13 and Arabidopsis P450 Reductase1 was observed. We detected increased substrate affinity of CYP79B2 in the presence of CYP71A13, indicating an allosteric interaction. Camalexin biosynthesis involves glutathionylation of the intermediary indole-3-cyanohydrin, which is synthesized by CYP71A12 and especially CYP71A13. FRET-FLIM and co-IP demonstrated that the glutathione transferase GSTU4, which is coexpressed with Trp- and camalexin-specific enzymes, is physically recruited to the complex. Surprisingly, camalexin concentrations were elevated in knockout and reduced in GSTU4-overexpressing plants. This shows that GSTU4 is not directly involved in camalexin biosynthesis but rather plays a role in a competing mechanism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Biosynthetic Pathways/physiology , Indoles/metabolism , Thiazoles/metabolism , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biosynthetic Pathways/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Gene Knockout Techniques , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified , Sesquiterpenes , Nicotiana/genetics , Nicotiana/metabolism , Phytoalexins
14.
ACS Chem Biol ; 14(4): 655-664, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30901187

ABSTRACT

Chemical proteomic approaches utilizing immobilized, broad-selective kinase inhibitors (Kinobeads) have proven valuable for the elucidation of a compound's target profile under close-to-physiological conditions and often revealed potentially synergistic or toxic off-targets. Current Kinobeads enrich more than 300 native protein kinases from cell line or tissue lysates but do not systematically cover phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related kinases (PIKKs). Some PIKKs and PI3Ks show aberrant activation in many human diseases and are indeed validated drug targets. Here, we report the development of a novel version of Kinobeads that extends kinome coverage to these proteins. This is achieved by inclusion of two affinity probes derived from the clinical PI3K/MTOR inhibitors Omipalisib and BGT226. We demonstrate the utility of the new affinity matrix by the profiling of 13 clinical and preclinical PIKK/PI3K inhibitors. The large discrepancies between the PI3K affinity values obtained and reported results from recombinant assays led us to perform a phosphoproteomic experiment showing that the chemoproteomic assay is the better approximation of PI3K inhibitor action in cellulo. The results further show that NVP-BEZ235 is not a PI3K inhibitor. Surprisingly, the designated ATM inhibitor CP466722 was found to bind strongly to ALK2, identifying a new chemotype for drug discovery to treat fibrodysplasia ossificans progressiva.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Signal Transduction/drug effects
15.
J Proteome Res ; 18(4): 1486-1493, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30799618

ABSTRACT

Despite the increasing use of high-throughput experiments in molecular biology, methods for evaluating and classifying the acquired results have not kept pace, requiring significant manual efforts to do so. Here, we present CiRCus, a framework to generate custom machine learning models to classify results from high-throughput proteomics binding experiments. We show the experimental procedure that guided us to the layout of this framework as well as the usage of the framework on an example data set consisting of 557 166 protein/drug binding curves achieving an AUC of 0.9987. By applying our classifier to the data, only 6% of the data might require manual investigation. CiRCus bundles two applications, a minimal interface to label a training data set (CindeR) and an interface for the generation of random forest classifiers with optional optimization of pretrained models (CurveClassification). CiRCus is available on https://github.com/kusterlab accompanied by an in-depth user manual and video tutorial.


Subject(s)
High-Throughput Screening Assays/methods , Machine Learning , Proteomics/methods , Software , Algorithms , Binding, Competitive/physiology , Databases, Protein , Protein Binding , Proteins/chemistry , Proteins/metabolism
16.
Cell Mol Gastroenterol Hepatol ; 6(3): 370-388.e3, 2018.
Article in English | MEDLINE | ID: mdl-30182050

ABSTRACT

Background & Aims: Antibiotic (ABx) therapy is associated with increased risk for Crohn's disease but underlying mechanisms are unknown. We observed high fecal serine protease activity (PA) to be a frequent side effect of ABx therapy. The aim of the present study was to unravel whether this rise in large intestinal PA may promote colitis development via detrimental effects on the large intestinal barrier. Methods: Transwell experiments were used to assess the impact of high PA in ABx-treated patients or vancomycin/metronidazole-treated mice on the epithelial barrier. Serine protease profiling was performed using liquid chromatography-mass spectrometry/mass spectrometry analysis. The impact of high large intestinal PA on the intestinal barrier in wild-type and interleukin (IL)10-/- mice and on colitis development in IL10-/- mice was investigated using vancomycin/metronidazole with or without oral serine protease inhibitor (AEBSF) treatment. Results: The ABx-induced, high large intestinal PA was caused by significantly increased levels of pancreatic proteases and impaired epithelial barrier integrity. In wild-type mice, the rise in PA caused a transient increase in intestinal permeability but did not affect susceptibility to chemically induced acute colitis. In IL10-/- mice, increased PA caused a consistent impairment of the intestinal barrier associated with inflammatory activation in the large intestinal tissue. In the long term, the vancomycin/metronidazole-induced lasting increase in PA aggravated colitis development in IL10-/- mice. Conclusions: High large intestinal PA is a frequent adverse effect of ABx therapy, which is detrimental to the large intestinal barrier and may contribute to the development of chronic intestinal inflammation in susceptible individuals.


Subject(s)
Anti-Bacterial Agents/adverse effects , Colitis/metabolism , Intestine, Large/enzymology , Serine Proteases/metabolism , Animals , Colitis/chemically induced , Dextran Sulfate/pharmacology , Disease Models, Animal , Feces/enzymology , Feces/microbiology , Humans , Intestine, Large/microbiology , Metronidazole/adverse effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Risk Factors , Sulfones/pharmacology , Vancomycin/adverse effects
17.
Appl Microbiol Biotechnol ; 102(23): 10147-10159, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30259100

ABSTRACT

Due to their high secretion capacity, Gram-positive bacteria from the genus Bacillus are important expression hosts for the high-yield production of enzymes in industrial biotechnology; however, to date, strains from only few Bacillus species are used for enzyme production at industrial scale. Herein, we introduce Paenibacillus polymyxa DSM 292, a member of a different genus, as a novel host for secretory protein production. The model gene cel8A from Clostridium thermocellum was chosen as an easily detectable reporter gene with industrial relevance to demonstrate heterologous expression and secretion in P. polymyxa. The yield of the secreted cellulase Cel8A protein was increased by optimizing the expression medium and testing several promoter sequences in the expression plasmid pBACOV. Quantitative mass spectrometry was used to analyze the secretome in order to identify promising new promoter sequences from the P. polymyxa genome itself. The most abundantly secreted host proteins were identified, and the promoters regulating the expression of their corresponding genes were selected. Eleven promoter sequences were cloned and tested, including well-characterized promoters from Bacillus subtilis and Bacillus megaterium. The best result was achieved with the promoter for the hypothetical protein PPOLYM_03468 from P. polymyxa. In combination with the optimized expression medium, this promoter enabled the production of 5475 U/l of Cel8A, which represents a 6.2-fold increase compared to the reference promoter PaprE. The set of promoters described in this work covers a broad range of promoter strengths useful for heterologous expression in the new host P. polymyxa.


Subject(s)
Cellulase/biosynthesis , Clostridium thermocellum/genetics , Paenibacillus polymyxa/genetics , Promoter Regions, Genetic , Bacillus megaterium/genetics , Bacillus subtilis/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Cellulase/genetics , Clostridium thermocellum/enzymology , Culture Media/chemistry , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genes, Reporter , Genetic Vectors , Industrial Microbiology , Paenibacillus polymyxa/enzymology
18.
ChemMedChem ; 13(16): 1629-1633, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29928781

ABSTRACT

Erythropoietin-producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP-BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity.


Subject(s)
Pyrazoles/metabolism , Pyrimidines/metabolism , Receptor, EphA2/metabolism , Receptor, EphB4/metabolism , Crystallography, X-Ray , Humans , Isomerism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Receptor, EphA2/chemistry , Receptor, EphB4/chemistry
19.
Science ; 358(6367)2017 12 01.
Article in English | MEDLINE | ID: mdl-29191878

ABSTRACT

Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery/methods , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cytokines/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Mice , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
20.
Mol Syst Biol ; 13(11): 951, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29101300

ABSTRACT

Most molecular cancer therapies act on protein targets but data on the proteome status of patients and cellular models for proteome-guided pre-clinical drug sensitivity studies are only beginning to emerge. Here, we profiled the proteomes of 65 colorectal cancer (CRC) cell lines to a depth of > 10,000 proteins using mass spectrometry. Integration with proteomes of 90 CRC patients and matched transcriptomics data defined integrated CRC subtypes, highlighting cell lines representative of each tumour subtype. Modelling the responses of 52 CRC cell lines to 577 drugs as a function of proteome profiles enabled predicting drug sensitivity for cell lines and patients. Among many novel associations, MERTK was identified as a predictive marker for resistance towards MEK1/2 inhibitors and immunohistochemistry of 1,074 CRC tumours confirmed MERTK as a prognostic survival marker. We provide the proteomic and pharmacological data as a resource to the community to, for example, facilitate the design of innovative prospective clinical trials.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , c-Mer Tyrosine Kinase/genetics , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Gene Regulatory Networks , Humans , Immunohistochemistry , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 2/metabolism , Pharmacogenetics/methods , Prognosis , Protein Kinase Inhibitors/therapeutic use , Proteomics/methods , Signal Transduction , Survival Analysis , c-Mer Tyrosine Kinase/antagonists & inhibitors , c-Mer Tyrosine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...