Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Skeletal Radiol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607418

ABSTRACT

OBJECTIVE: To compare image quality and diagnostic performance of 3T and 7T magnetic resonance imaging (MRI) for direct depiction of finger flexor pulleys A2, A3 and A4 before and after artificial pulley rupture in an ex-vivo model using anatomic preparation as reference. MATERIALS AND METHODS: 30 fingers from 10 human cadavers were examined at 3T and 7T before and after being subjected to iatrogenic pulley rupture. MRI protocols were comparable in duration, both lasting less than 22 min. Two experienced radiologists evaluated the MRIs. Image quality was graded according to a 4-point Likert scale. Anatomic preparation was used as gold standard. RESULTS: In comparison, 7T versus 3T had a sensitivity and specificity for the detection of A2, A3 and A4 pulley lesions with 100% vs. 95%, respectively 98% vs. 100%. In the assessment of A3 pulley lesions sensitivity of 7T was superior to 3T MRI (100% vs. 83%), whereas specificity was lower (95% vs. 100%). Image quality assessed before and after iatrogenic rupture was comparable with 2.74 for 7T and 2.61 for 3T. Visualization of the A3 finger flexor pulley before rupture creation was significantly better for 7 T (p < 0.001). Interobserver variability showed substantial agreement at 3T (κ = 0.80) and almost perfect agreement at 7T (κ = 0.90). CONCLUSION: MRI at 3T allows a comparable diagnostic performance to 7T for direct visualization and characterization of finger flexor pulleys before and after rupture, with superiority of 7T MRI in the visualization of the normal A3 pulley.

3.
Eur J Radiol ; 173: 111352, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330534

ABSTRACT

PURPOSE: Broader clinical adoption of breast magnetic resonance imaging (MRI) faces challenges such as limited availability and high procedural costs. Low-field technology has shown promise in addressing these challenges. We report our initial experience using a next-generation scanner for low-field breast MRI at 0.55T. METHODS: This initial cases series was part of an institutional review board-approved prospective study using a 0.55T scanner (MAGNETOM Free.Max, Siemens Healthcare, Erlangen/Germany: height < 2 m, weight < 3.2 tons, no quench pipe) equipped with a seven-channel breast coil (Noras, Höchberg/Germany). A multiparametric breast MRI protocol consisting of dynamic T1-weighted, T2-weighted, and diffusion-weighted sequences was optimized for 0.55T. Two radiologists with 12 and 20 years of experience in breast MRI evaluated the examinations. RESULTS: Twelve participants (mean age: 55.3 years, range: 36-78 years) were examined. The image quality was diagnostic in all examinations and not impaired by relevant artifacts. Typical imaging phenotypes were visualized. The scan time for a complete, non-abbreviated breast MRI protocol ranged from 10:30 to 18:40 min. CONCLUSION: This initial case series suggests that low-field breast MRI is feasible at diagnostic image quality within an acceptable examination time.


Subject(s)
Magnetic Resonance Imaging , Multiparametric Magnetic Resonance Imaging , Humans , Middle Aged , Prospective Studies , Sensitivity and Specificity , Magnetic Resonance Imaging/methods , Breast/diagnostic imaging , Breast/pathology
4.
Eur Radiol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345606

ABSTRACT

OBJECTIVES: The purpose of this study was to assess morphological and quantitative changes of the anterior cruciate ligament (ACL) and cartilage after ACL repair. METHODS: 7T MRI of the knee was acquired in 31 patients 1.5 years after ACL repair and in 13 controls. Proton density-weighted images with fat saturation (PD-fs) were acquired to assess ACL width, signal intensity, elongation, and fraying. T2/T2* mapping was performed for assessment of ACL and cartilage. Segmentation of the ACL, femoral, and tibial cartilage was carried out at 12 ROIs. The outcome evaluation consisted of the Lysholm Knee Score and International Knee Documentation Committee (IKDC) subjective score and clinical examination. RESULTS: ACL showed a normal signal intensity in 96.8% and an increased width in 76.5% after repair. Fraying occurred in 22.6% without having an impact on the clinical outcome (Lysholm score: 90.39 ± 9.75, p = 0.76 compared to controls). T2 analysis of the ACL revealed no difference between patients and controls (p = 0.74). Compared to controls, assessment of the femoral and tibial cartilage showed a significant increase of T2* times in all ROIs, except at the posterolateral femur. Patients presented a good outcome in clinical examination with a Lysholm score of 87.19 ± 14.89 and IKDC of 80.23 ± 16.84. CONCLUSION: T2 mapping results suggest that the tissue composition of the ACL after repair is similar to that of a native ACL after surgery, whereas the ACL exhibits an increased width. Fraying of the ACL can occur without having any impact on functional outcomes. T2* analysis revealed early degradation at the cartilage. CLINICAL RELEVANCE STATEMENT: MRI represents a noninvasive diagnostic tool for the morphological and compositional assessment of the anterior cruciate ligament after repair, whereas knowledge about post-surgical alterations is crucial for adequate imaging interpretation. KEY POINTS: • There has been renewed interest in repairing the anterior cruciate ligament with a proximally torn ligament. • T2 times of the anterior cruciate ligament do not differ between anterior cruciate ligament repair patients and controls. • T2 mapping may serve as a surrogate for the evaluation of the anterior cruciate ligament after repair.

5.
Skeletal Radiol ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381197

ABSTRACT

This narrative review explores recent advancements and applications of modern low-field (≤ 1 Tesla) magnetic resonance imaging (MRI) in musculoskeletal radiology. Historically, high-field MRI systems (1.5 T and 3 T) have been the standard in clinical practice due to superior image resolution and signal-to-noise ratio. However, recent technological advancements in low-field MRI offer promising avenues for musculoskeletal imaging. General principles of low-field MRI systems are being introduced, highlighting their strengths and limitations compared to high-field counterparts. Emphasis is placed on advancements in hardware design, including novel magnet configurations, gradient systems, and radiofrequency coils, which have improved image quality and reduced susceptibility artifacts particularly in musculoskeletal imaging. Different clinical applications of modern low-field MRI in musculoskeletal radiology are being discussed. The diagnostic performance of low-field MRI in diagnosing various musculoskeletal pathologies, such as ligament and tendon injuries, osteoarthritis, and cartilage lesions, is being presented. Moreover, the discussion encompasses the cost-effectiveness and accessibility of low-field MRI systems, making them viable options for imaging centers with limited resources or specific patient populations. From a scientific standpoint, the amount of available data regarding musculoskeletal imaging at low-field strengths is limited and often several decades old. This review will give an insight to the existing literature and summarize our own experiences with a modern low-field MRI system over the last 3 years. In conclusion, the narrative review highlights the potential clinical utility, challenges, and future directions of modern low-field MRI, offering valuable insights for radiologists and healthcare professionals seeking to leverage these advancements in their practice.

6.
Eur J Pediatr ; 183(4): 1645-1655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38193996

ABSTRACT

Recently, the importance of post-COVID-19 in children has been recognized in surveys and retrospective chart analysis. However, objective data in the form of cardiopulmonary exercise test as performed in adults suffering from this condition are still lacking. This study aimed to investigate the cardiopulmonary effects of post-COVID-19 on children and adolescents. In this cross-sectional study (the FASCINATE study), children fulfilling the criteria of post-COVID-19 and an age- and sex-matched control group underwent cardiopulmonary exercise testing on a treadmill and completed a questionnaire with regard to physical activity before, during and after the infection with SARS-CoV-2. We were able to recruit 20 children suffering from post-COVID-19 (mean age 12.8 ± 2.4 years, 60% females) and 28 control children (mean age 11.7 ± 3.5 years, 50% females). All participants completed a maximal treadmill test with a significantly lower V ˙ O 2 peak in the post-COVID-19 group (37.4 ± 8.8 ml/kg/min vs. 43.0 ± 6.7 ml/kg/min. p = 0.019). This significance did not persist when comparing the achieved percentage of predicted V ˙ O 2 peak . There were no significant differences for oxygen pulse, heart rate, minute ventilation or breathing frequency.   Conclusion: This is the first study to investigate post-COVID-19 in children using the cardiopulmonary exercise test. Although there was a significantly reduced V ˙ O 2 peak in the post-COVID-19 group, this was not true for the percent of predicted values. No pathological findings with respect to cardiac or pulmonary functions could be discerned. Deconditioning was the most plausible cause for the experienced symptoms.    Trial registration: clinicaltrials.gov, NCT054445531, Low-field Magnetic Resonance Imaging in Pediatric Post Covid-19-Full Text View-ClinicalTrials.gov. What is Known: • The persistence of symptoms after an infection with SARS-CoV 2, so-called post-COVID-19 exists also in children. • So far little research has been conducted to analyze this entity in the pediatric population. What is New: • This is the first study proving a significantly lower cardiopulmonary function in pediatric patients suffering from post-COVID-19 symptoms. • The cardiac and pulmonary function appear similar between children suffering from post-COVID-19 and those who don't, but the peripheral muscles seem affected.


Subject(s)
COVID-19 , Adult , Female , Adolescent , Humans , Child , Male , Retrospective Studies , Cross-Sectional Studies , SARS-CoV-2 , Lung , Exercise Test/methods
7.
Sportverletz Sportschaden ; 38(1): 31-39, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37348536

ABSTRACT

The proximal hamstring complex is a highly vulnerable area that is especially prone to injury. Proximal hamstring tendinopathies (PHTs) remain challenging in diagnosis, treatment, rehabilitation, and prevention due to a large variety of different injuries, slow healing response, persistent symptoms, and functional impairments. PHTs are often misdiagnosed or underdiagnosed, leading to delayed treatment and therapy failure. In addition, many athletes are at a high risk of PHT recurrence, a leading cause of prolonged rehabilitation and impaired individual performance. Until now, there have been no clear criteria for the diagnosis and classification of PHT. Tendinopathies can be graded based on their symptoms and onset. Additionally, radiological characteristics exist that describe the severity of tendinopathies. The diagnosis usually includes a battery of pain provocation tests, functional tests, and imaging to ensure a proper classification. Understanding the specific tasks in the pathogenesis and diagnostic process of PHT requires knowledge of functional anatomy, injury pattern and pathophysiological mechanisms as well as examination and imaging techniques. This work provides a structured overview of the pathogenesis and diagnostic work-up of PHT, emphasizing structured examination and imaging to enable a reliable diagnosis and rapid treatment decisions.


Subject(s)
Athletic Injuries , Hamstring Muscles , Tendinopathy , Humans , Athletic Injuries/therapy , Athletic Injuries/prevention & control , Tendinopathy/diagnosis , Tendinopathy/therapy , Pain , Hamstring Muscles/injuries
8.
Invest Radiol ; 59(3): 223-229, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37493286

ABSTRACT

OBJECTIVES: Temporomandibular disorders (TMDs) are common and may cause persistent functional limitations and pain. Magnetic resonance imaging (MRI) at 1.5 and 3 T is commonly applied for the evaluation of the temporomandibular joint (TMJ). No evidence is available regarding the feasibility of modern low-field MRI for the assessment of TMDs. The objective of this prospective study was to evaluate the image quality (IQ) of 0.55 T MRI in direct comparison with 1.5 T MRI. MATERIALS AND METHODS: Seventeen patients (34 TMJs) with suspected intraarticular TMDs were enrolled, and both 0.55 and 1.5 T MRI were performed on the same day. Two senior readers independently evaluated the IQ focusing on the conspicuity of disc morphology (DM), disc position (DP), and osseous joint morphology (OJM) for each joint. We analyzed the IQ and degree of artifacts using a 4-point Likert scale (LS) at both field strengths. A fully sufficient IQ was defined as an LS score of ≥3. Nonparametric Wilcoxon test for related samples was used for statistical comparison. RESULTS: The median IQ for the DM and OJM at 0.55 T was inferior to that at 1.5 T (DM: 3 [interquartile range {IQR}, 3-4] vs 4 [IQR, 4-4]; OJM: 3 [IQR, 3-4] vs 4 [IQR 4-4]; each P < 0.001). For DP, the IQ was comparable (4 [IQR 3-4] vs 4 [IQR 4-4]; P > 0.05). A sufficient diagnostic IQ was maintained for the DM, DP, and OJM in 92% of the cases at 0.55 T and 100% at 1.5 T. Minor image artifacts (LS score of ≥3) were more prevalent at 0.55 T (29%) than at 1.5 T (12%). CONCLUSIONS: Magnetic resonance imaging of the TMJ at 0.55 T yields a lower IQ than does MRI at 1.5 T but maintains sufficient diagnostic confidence in the majority of patients. Further improvements are needed for reliable clinical application.


Subject(s)
Temporomandibular Joint Disc , Temporomandibular Joint Disorders , Humans , Temporomandibular Joint Disc/pathology , Prospective Studies , Temporomandibular Joint/anatomy & histology , Temporomandibular Joint/pathology , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/pathology , Magnetic Resonance Imaging/methods
9.
Invest Radiol ; 59(3): 215-222, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37490031

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the accuracy of modern low-field magnetic resonance imaging (MRI) for lung nodule detection and to correlate nodule size measurement with computed tomography (CT) as reference. MATERIALS AND METHODS: Between November 2020 and July 2021, a prospective clinical trial using low-field MRI at 0.55 T was performed in patients with known pulmonary nodules from a single academic medical center. Every patient underwent MRI and CT imaging on the same day. The primary aim was to evaluate the detection accuracy of pulmonary nodules using MRI with transversal periodically rotated overlapping parallel lines with enhanced reconstruction in combination with coronal half-Fourier acquired single-shot turbo spin-echo MRI sequences. The secondary outcome was the correlation of the mean lung nodule diameter with CT as reference according to the Lung Imaging Reporting and Data System. Nonparametric Mann-Whitney U test, Spearman rank correlation coefficient, and Bland-Altman analysis were applied to analyze the results. RESULTS: A total of 46 participants (mean age ± SD, 66 ± 11 years; 26 women) were included. In a blinded analysis of 964 lung nodules, the detection accuracy was 100% for those ≥6 mm (126/126), 80% (159/200) for those ≥4-<6 mm, and 23% (147/638) for those <4 mm in MRI compared with reference CT. Spearman correlation coefficient of MRI and CT size measurement was r = 0.87 ( P < 0.001), and the mean difference was 0.16 ± 0.9 mm. CONCLUSIONS: Modern low-field MRI shows excellent accuracy in lesion detection for lung nodules ≥6 mm and a very strong correlation with CT imaging for size measurement, but could not compete with CT in the detection of small nodules.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Female , Prospective Studies , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
10.
Radiol Med ; 129(2): 268-279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38017228

ABSTRACT

OBJECTIVES: To compare a novel, non-contrast, flow-independent, 3D isotropic magnetic resonance angiography (MRA) sequence that combines respiration compensation, electrocardiogram (ECG)-triggering, undersampling, and Dixon water-fat separation with an ECG-triggered aortic high-pitch computed tomography angiography (CTA) of the aorta. MATERIALS AND METHODS: Twenty-five patients with recent CTA were scheduled for non-contrast MRA on a 3 T MRI. Aortic diameters and cross-sectional areas were measured on MRA and CTA using semiautomatic measurement tools at 11 aortic levels. Image quality was assessed independently by two radiologists on predefined aortic levels, including myocardium, proximal aortic branches, pulmonary veins and arteries, and the inferior (IVC) and superior vena cava (SVC). Image quality was assessed on a 5-point Likert scale. RESULTS: All datasets showed diagnostic image quality. Visual grading was similar for MRA and CTA regarding overall image quality (0.71), systemic arterial image quality (p = 0.07-0.91) and pulmonary artery image quality (p = 0.05). Both readers favored MRA for SVC and IVC, while CTA was preferred for pulmonary veins (all p < 0.05). No significant difference was observed in aortic diameters or cross-sectional areas between native MRA and contrast-enhanced CTA (p = 0.08-0.94). CONCLUSION: The proposed non-contrast MRA enables robust imaging of the aorta, its proximal branches and the pulmonary arteries and great veins with image quality and aortic diameters and cross-sectional areas comparable to that of CTA. Moreover, this technique represents a suitable free-breathing alternative, without the use of contrast agents or ionizing radiation. Therefore, it is especially suitable for patients requiring repetitive imaging.


Subject(s)
Computed Tomography Angiography , Contrast Media , Humans , Magnetic Resonance Angiography/methods , Vena Cava, Superior/diagnostic imaging , Pulmonary Artery
11.
Eur Radiol Exp ; 7(1): 80, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38093075

ABSTRACT

BACKGROUND: To analyze regional variations in T2 and T2* relaxation times in wrist joint cartilage and the triangular fibrocartilage complex (TFCC) at 3 and 7 T and to compare values between field strengths. METHODS: Twenty-five healthy controls and 25 patients with chronic wrist pain were examined at 3 and 7 T on the same day using T2- and T2*-weighted sequences. Six different regions of interest (ROIs) were evaluated for cartilage and 3 ROIs were evaluated at the TFCC based on manual segmentation. Paired t-tests were used to compare T2 and T2* values between field strengths and between different ROIs. Spearman's rank correlation was calculated to assess correlations between T2 and T2* time values at 3 and 7 T. RESULTS: T2 and T2* time values of the cartilage differed significantly between 3 and 7 T for all ROIs (p ≤ 0.045), with one exception: at the distal lunate, no significant differences in T2 values were observed between field strengths. T2* values differed significantly between 3 and 7 T for all ROIs of the TFCC (p ≤ 0.001). Spearman's rank correlation between 3 and 7 T ranged from 0.03 to 0.62 for T2 values and from 0.01 to 0.48 for T2* values. T2 and T2* values for cartilage varied across anatomic locations in healthy controls at both 3 and 7 T. CONCLUSION: Quantitative results of T2 and T2* mapping at the wrist differ between field strengths, with poor correlation between 3 and 7 T. Local variations in cartilage T2 and T2* values are observed in healthy individuals. RELEVANCE STATEMENT: T2 and T2* mapping are feasible for compositional imaging of the TFCC and the cartilage at the wrist at both 3 and 7 T, but the clinical interpretation remains challenging due to differences between field strengths and variations between anatomic locations. KEY POINTS: •Field strength and anatomic locations influence T2 and T2* values at the wrist. •T2 and T2* values have a poor correlation between 3 and 7 T. •Local reference values are needed for each anatomic location for reliable interpretation.


Subject(s)
Wrist Joint , Wrist , Humans , Wrist/diagnostic imaging , Wrist Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Cartilage
12.
Bioengineering (Basel) ; 10(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38135956

ABSTRACT

Intracranial hemorrhages require an immediate diagnosis to optimize patient management and outcomes, and CT is the modality of choice in the emergency setting. We aimed to evaluate the performance of the first scanner-integrated artificial intelligence algorithm to detect brain hemorrhages in a routine clinical setting. This retrospective study includes 435 consecutive non-contrast head CT scans. Automatic brain hemorrhage detection was calculated as a separate reconstruction job in all cases. The radiological report (RR) was always conducted by a radiology resident and finalized by a senior radiologist. Additionally, a team of two radiologists reviewed the datasets retrospectively, taking additional information like the clinical record, course, and final diagnosis into account. This consensus reading served as a reference. Statistics were carried out for diagnostic accuracy. Brain hemorrhage detection was executed successfully in 432/435 (99%) of patient cases. The AI algorithm and reference standard were consistent in 392 (90.7%) cases. One false-negative case was identified within the 52 positive cases. However, 39 positive detections turned out to be false positives. The diagnostic performance was calculated as a sensitivity of 98.1%, specificity of 89.7%, positive predictive value of 56.7%, and negative predictive value (NPV) of 99.7%. The execution of scanner-integrated AI detection of brain hemorrhages is feasible and robust. The diagnostic accuracy has a high specificity and a very high negative predictive value and sensitivity. However, many false-positive findings resulted in a relatively moderate positive predictive value.

13.
Skeletal Radiol ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991553

ABSTRACT

Accurate diagnosis of muscle injuries is a challenge in everyday clinical practice and may have profound impact on the recovery and return-to-play decisions of professional athletes particularly in soccer. Imaging techniques such as ultrasound and magnetic resonance imaging (MRI), in addition to the medical history and clinical examination, make a significant contribution to the timely structural assessment of muscle injuries. The severity of a muscle injury determined by imaging findings has a decisive influence on therapy planning and affects prognosis. Imaging is of high importance when the diagnosis or grade of injury is unclear, when recovery is taking longer than expected, and when interventional or surgical management may be needed. This narrative review will discuss ultrasound and MRI for the assessment of sports-related muscle injuries in the context of soccer, including advanced imaging techniques, with the focus on the clinical relevance of imaging findings for the prediction of return to play.

14.
Front Sports Act Living ; 5: 1248581, 2023.
Article in English | MEDLINE | ID: mdl-37828999

ABSTRACT

Purpose: Sport climbing may lead to tissue adaptation including finger cartilage before apparent surface damage is detectable. The main aim was to assess finger cartilage composition with T2 mapping in young, active climbers and to compare the results to a non-climbers' collective. A secondary aim was to compare whether differences in cartilage T2 times are observed between older vs. younger volunteers. Methods and materials: 7 Tesla MRI of the fingers Dig.2-4 was performed using a multi-echo spin echo sequence. Manual segmentation of 3 ROIs at the metacarpal heads, 1 ROI at the base phalanx and 1 ROI at the proximal interphalangeal joint was performed. Included were 13 volunteers without history of trauma who are regularly performing climbing activities as a recreational sport (>20 h/month). These were age-matched with 10 control subjects not performing climbing activities. Results: Mean age was 32.4 years for the climbing group and 25.8 years for the controls. Mean T2 values for the 5 different ROIs were 42.2 ± 7.8 msec for climbers and 41.4 ± 6.8 msec for non-climbers. No significant differences were observed for T2 values between both groups. However, higher age had a significant impact on T2 values for all assessed ROIs (higher age 44.2 ± 9.5, younger age 32.9 ± 5.7, p = 0.001). Discussion: This study evaluated the cartilage composition of young, engaged climbers with a T2 mapping MRI technique with the purpose to depict early onset joint changes. No negative impact on cartilage composition due to the sport activity was found, whereas age-related effects on the cartilage seemed to be more prominent.

15.
Radiology ; 308(2): e221531, 2023 08.
Article in English | MEDLINE | ID: mdl-37552087

ABSTRACT

This article describes recent advances in quantitative imaging of musculoskeletal extremity sports injuries, citing the existing literature evidence and what additional evidence is needed to make such techniques applicable to clinical practice. Compositional and functional MRI techniques including T2 mapping, diffusion tensor imaging, and sodium imaging as well as contrast-enhanced US have been applied to quantify pathophysiologic processes and biochemical compositions of muscles, tendons, ligaments, and cartilage. Dual-energy and/or spectral CT has shown potential, particularly for the evaluation of osseous and ligamentous injury (eg, creation of quantitative bone marrow edema maps), which is not possible with standard single-energy CT. Recent advances in US technology such as shear-wave elastography or US tissue characterization as well as MR elastography enable the quantification of mechanical, elastic, and physical properties of tissues in muscle and tendon injuries. The future role of novel imaging techniques such as photon-counting CT remains to be established. Eventual prediction of return to play (ie, the time needed for the injury to heal sufficiently so that the athlete can get back to playing their sport) and estimation of risk of repeat injury is desirable to help guide sports physicians in the treatment of their patients. Additional values of quantitative analyses, as opposed to routine qualitative analyses, still must be established using prospective longitudinal studies with larger sample sizes.


Subject(s)
Elasticity Imaging Techniques , Sports Medicine , Tendon Injuries , Humans , Prospective Studies , Diffusion Tensor Imaging , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging/methods
16.
Ultraschall Med ; 44(4): e191-e198, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37552977

ABSTRACT

PURPOSE: Microvascular blood flow (MBF) and its intramuscular regulation are of importance for physiological responsiveness and adaptation. The quantifiable in-vivo monitoring of MBF after cycling or systemic cold-water exposure may reveal new insights into capillary regulatory mechanisms. This study aimed to assess the role of exercise and cold therapy on MBF by using contrast-enhanced ultrasound (CEUS). METHODS: Twenty healthy athletes were recruited and randomly assigned to an intervention (IG) or a control group (CG). MBF was quantified in superficial (rectus femoris, RF) and deep muscle layers (vastus intermedius, VI). Representative perfusion parameters (peak enhancement (PE) and wash-in area under the curve (WiAUC)) were measured after a standardized measurement protocol for both groups at resting conditions (t0) and after cycling (20 min., 70% Watt max, t1) for both groups, after cold-water immersion exposure for IG (15 min., 12°C) or after precisely 15 minutes of rest for CG (t2) and for both groups after 60 minutes of follow-up (t3). RESULTS: At t1, MBF in VI increased significantly compared to resting conditions in both groups in VI (p= 0.02). After the cold-water exposure (t2), there were no statistically significant changes in perfusion parameters as well as after 60 minutes of follow-up (t3) (p = 0.14). CONCLUSION: Cycling leads to an upregulation of MBF. However, cold exposure does not change the MBF. The implementation of CEUS during different physiological demands may provide deeper insight into intramuscular perfusion regulation and regenerative processes.


Subject(s)
Muscles , Water , Humans , Ultrasonography/methods , Perfusion
17.
Diagnostics (Basel) ; 13(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37510147

ABSTRACT

(1) Purpose: to compare right ventricular (RV) functional parameters in children with surgically repaired congenital heart disease (CHD) using single/double breath hold (BH) and free-breathing (FB) real-time compressed sensing (CS) cine cardiac magnetic resonance (cMRI) with standard retrospective segmented multi breath hold (RMB) cine cMRI. (2) Methods: Twenty patients with CHD underwent BH and FB, as well as RMB cine cMRI, at 3T to obtain a stack of continuous axial images of the RV. Two radiologists independently performed qualitative analysis of the image quality (rated on a 5-point scale; 1 = non-diagnostic to 5 = excellent) and quantitative analysis of the RV volume measurements. (3) Results: The best image quality was provided by RMB (4.5; range 2-5) compared to BH (3.9; range 3-5; p = 0.04) and FB (3.6; range 3-5; p < 0.01). The RV functional parameters were comparable among BH, FB, and RMB with a difference of less than 5%. The scan times for BH (44 ± 38 s, p < 0.01) and FB (24 ± 7 s, p < 0.01) were significantly reduced compared to for RMB (261 ± 68 s). (4) Conclusions: CS-FB and CS-BH real-time cine cMRI in children with CHD provides diagnostic image quality with excellent accuracy for measuring RV function with a significantly reduced scan time compared to RMB.

18.
Eur J Radiol ; 165: 110927, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37379624

ABSTRACT

OBJECTIVES: Vestibular schwannoma (VS) is the most common mass of the internal auditory canal (IAC) and is responsible for unilateral sensorineural hearing loss. Magnetic resonance imaging (MRI) at 1.5 T and 3 T is the standard of care for the evaluation of VS, and the feasibility of using modern low-field MRI for imaging of the IAC has not yet been elucidated. Hence, the purpose of this prospective study was to assess image quality and diagnostic performance of a modern 0.55 T MRI. MATERIALS AND METHODS: Fifty-six patients with known unilateral VS underwent routine MRI of the IAC at 1.5 T, followed immediately by 0.55 T MRI. Two radiologists independently evaluated the image quality, conspicuity of VS, diagnostic confidence, and image artifacts separately for isotropic T2-weighted SPACE images and for transversal and coronal T1-weighted fat-saturated contrast-enhanced images at 1.5 T and 0.55 T using 5-point Likert scales. In a second independent reading, both readers assessed lesion conspicuity and subjective diagnostic confidence in a direct comparison of 1.5 T and 0.55 T images. RESULTS: Image quality of transversal T1-weighted images (p = 0.13 and p = 0.16 for Reader 1 and Reader 2, respectively) and T2-weighted SPACE images (p = 0.39 and p = 0.58) were rated equally at 1.5 T and 0.55 T by both readers, whereas image quality of coronal T1-weighted images was superior at 1.5 T (p = 0.009 and p = 0.001). Analysis of the conspicuity of VS, diagnostic confidence, and image artifacts of all sequences revealed no significant differences between 1.5 T and 0.55 T. In the direct comparison of 1.5 T with 0.55 T images, there were no significant differences in lesion conspicuity or diagnostic confidence for any sequence (p = 0.60-0.73). CONCLUSIONS: Modern low-field MRI at 0.55 T provided a sufficient diagnostic image quality and seems feasible for the evaluation of VS of the IAC.


Subject(s)
Neuroma, Acoustic , Humans , Neuroma, Acoustic/diagnostic imaging , Prospective Studies , Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Artifacts , Contrast Media
19.
J Clin Med ; 12(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37048806

ABSTRACT

Venous malformations are one of the most common vascular anomalies. Our study aimed to investigate the effect of medical compression stockings of class I and II on the volume of venous malformations. Patients with venous malformations on upper or lower extremities were enrolled. They wore flat-knitted medical compression stockings of class I and II in a randomized order for four weeks each. Magnetic resonance imaging (MRI) and perometry were performed with and without wearing compression stockings. The 12-Item Short Form Survey (SF-12) questionnaire was performed before and after wearing compression stockings for four weeks each. A total of 18 patients completed the evaluations. Both compression classes showed a significant reduction of the volume of the venous malformations in the lesion itself based on MRI in comparison with baseline (both p < 0.001). Measurements taken with perometry did not reveal a significant difference in comparison to baseline (p = 0.09 and p = 0.22). The results of the SF-12 questionnaire demonstrated no significant differences before and after wearing the compression stockings of class I or class II for four weeks or between the two classes of compression therapy. Our results indicate that wearing medical compression stockings of both class I and class II significantly reduces the volume of venous malformation, without compromising the quality of life, while the effect of class II compression stockings on volume reduction was significantly better than that of class I.

20.
Diagnostics (Basel) ; 13(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37046460

ABSTRACT

This study compares the diagnostic performance and image quality of single-shot turbo spin-echo DWI (tseDWI), standard readout-segmented DWI (rsDWI), and a modified rsDWI version (topupDWI) for cholesteatoma diagnostics. Thirty-four patients with newly suspected unilateral cholesteatoma were examined on a 1.5 Tesla MRI scanner. Diagnostic performance was evaluated by calculating and comparing the sensitivity and specificity using histopathological results as the standard of reference. Image quality was independently reviewed by two readers using a 5-point Likert scale evaluating image distortions, susceptibility artifacts, image resolution, lesion conspicuity, and diagnostic confidence. Twenty-five cholesteatomas were histologically confirmed after surgery and originated in the study group. TseDWI showed the highest sensitivity with 96% (95% confidence interval (CI): 88-100%), followed by topupDWI with 92% (95% CI: 81-100%) for both readers. The sensitivity for rsDWI was 76% (95% CI: 59-93%) for reader 1 and 84% (95% CI: 70-98%) for reader 2, respectively. Both tseDWI and topupDWI revealed a specificity of 100% (95% CI: 66-100%) and rsDWI of 89% (95% CI: 52-100%). Both tseDWI and topupDWI showed fewer image distortions and susceptibility artifacts compared to rsDWI. Image resolution was consistently rated best for topupDWI, followed by rsDWI, which both outperformed tseDWI. TopupDWI and tseDWI showed comparable results for lesions' conspicuity and diagnostic confidence, both outperforming rsDWI. Modified readout-segmented DWI using the topup-correction method is preferable to standard rsDWI and may be regarded as an accurate alternative to single-shot turbo spin-echo DWI in cholesteatoma diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...