Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(17): 5652-5662, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37017307

ABSTRACT

The Mn lattice in olivine chalcogenide Mn2SiX4 (X = S, Se) compounds forms a sawtooth, which is of special interest in magnetism owing to the possibility of realizing flat bands in magnon spectra, a key component in magnonics. In this work, we investigate the Mn2SiX4 olivines using magnetic susceptibility, and X-ray and neutron diffraction. We have determined the average and local crystal structures of Mn2SiS4 and Mn2SiSe4 using synchrotron X-ray, neutron diffraction, and X-ray total scattering data followed by Rietveld and pair distribution function analyses. It is found from the pair distribution function analysis that the Mn triangle that constitutes the sawtooth is isosceles in Mn2SiS4 and Mn2SiSe4. The temperature evolution of magnetic susceptibility of Mn2SiS4 and Mn2SiSe4 shows anomalies below 83 K and 70 K, respectively, associated with magnetic ordering. From the neutron powder diffraction measurements the magnetic space groups of Mn2SiS4 and Mn2SiSe4 are found to be Pnma and Pnm'a', respectively. We find that the Mn spins adopt a ferromagnetic alignment on the sawtooth in both Mn2SiS4 and Mn2SiSe4 but along different crystallographic directions for the S and the Se compounds. From the temperature evolution of Mn magnetic moments obtained from refining neutron diffraction data, the transition temperatures are accurately determined as TN(S) = 83(2) K and TN(Se) = 70.0(5) K. Broad diffuse magnetic peaks are observed in both the compounds, and are prominently seen close to TN, suggesting the presence of a short-range magnetic order. The magnetic excitations studied using inelastic neutron scattering reveal a magnon excitation with an energy corresponding to approximately 4.5 meV in both S and Se compounds. Spin correlations are observed to persist up to 125 K much above the ordering temperature and we suggest the possibility of short-range spin correlations responsible for this.

2.
Adv Sci (Weinh) ; 9(10): e2200391, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35150081

ABSTRACT

In magnetic systems, spin and exchange disorder can provide access to quantum criticality, frustration, and spin dynamics, but broad tunability of these responses and a deeper understanding of strong limit disorder are lacking. Here, it is demonstrated that high entropy oxides present a previously unexplored route to designing materials in which the presence of strong local compositional disorder may be exploited to generate tunable magnetic behaviors-from macroscopically ordered states to frustration-driven dynamic spin interactions. Single-crystal La(Cr0.2 Mn0.2 Fe0.2 Co0.2 Ni0.2 )O3 films are used as a model system hosting a magnetic sublattice with a high degree of microstate disorder in the form of site-to-site spin and exchange type inhomogeneity. A classical Heisenberg model simplified to represent the highest probability microstates well describes how compositionally disordered systems can paradoxically host magnetic uniformity and demonstrates a path toward continuous control over ordering types and critical temperatures. Model-predicted materials are synthesized and found to possess an incipient quantum critical point when magnetic ordering types are designed to be in direct competition, this leads to highly controllable exchange bias behaviors previously accessible only in intentionally designed bilayer heterojunctions.

3.
J Phys Condens Matter ; 33(37)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34171852

ABSTRACT

Na2Ni2TeO6has a layered hexagonal structure with a honeycomb lattice constituted by Ni2+and a chiral charge distribution of Na+that resides between the Ni layers. In the present work, the antiferromagnetic (AFM) transition temperature of Na2Ni2TeO6is confirmed atTN≈ 27 K, and further, it is found to be robust up to 8 T magnetic field and 1.2 GPa external pressure; and, without any frequency-dependence. Slight deviations from nominal Na-content (up to 5%) does not seem to influence the magnetic transition temperature,TN. Isothermal magnetization curves remain almost linear up to 13 T. Our analysis of neutron diffraction data shows that the magnetic structure of Na2Ni2TeO6is faithfully described by a model consisting of two phases described by the commensurate wave vectorsk→c,0.500and0.500.5, with an additional short-range order component incorporated in to the latter phase. Consequently, a zig-zag long-range ordered magnetic phase of Ni2+results in the compound, mixed with a short-range ordered phase, which is supported by our specific heat data. Theoretical computations based on density functional theory predict predominantly in-plane magnetic exchange interactions that conform to aJ1-J2-J3model with a strongJ3term. The computationally predicted parameters lead to a reliable estimate forTNand the experimentally observed zig-zag magnetic structure. A spin wave excitation in Na2Ni2TeO6atE≈ 5 meV atT= 5 K is mapped out through inelastic neutron scattering experiments, which is reproduced by linear spin wave theory calculations using theJvalues from our computations. Our specific heat data and inelastic neutron scattering data strongly indicate the presence of short-range spin correlations, atT>TN, stemming from incipient AFM clusters.

4.
Adv Sci (Weinh) ; 5(5): 1700978, 2018 May.
Article in English | MEDLINE | ID: mdl-29876219

ABSTRACT

Quantum magnetic properties in a geometrically frustrated lattice of spin-1/2 magnet, such as quantum spin liquid or solid and the associated spin fractionalization, are considered key in developing a new phase of matter. The feasibility of observing the quantum magnetic properties, usually found in geometrically frustrated lattice of spin-1/2 magnet, in a perovskite material with controlled disorder is demonstrated. It is found that the controlled chemical disorder, due to the chemical substitution of Ru ions by Co-ions, in a simple perovskite CaRuO3 creates a random prototype configuration of artificial spin-1/2 that forms dimer pairs between the nearest and further away ions. The localization of the Co impurity in the Ru matrix is analyzed using the Anderson localization formulation. The dimers of artificial spin-1/2, due to the localization of Co impurities, exhibit singlet-to-triplet excitation at low temperature without any ordered spin correlation. The localized gapped excitation evolves into a gapless quasi-continuum as dimer pairs break and create freely fluctuating fractionalized spins at high temperature. Together, these properties hint at a new quantum magnetic state with strong resemblance to the resonance valence bond system.

5.
Inorg Chem ; 52(16): 9399-408, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23909791

ABSTRACT

The results of crystallographic analysis, magnetic characterization, and theoretical assessment of ß-Mn-type Co-Zn intermetallics prepared using high-temperature methods are presented. These ß-Mn Co-Zn phases crystallize in the space group P4(1)32 [Pearson symbol cP20; a = 6.3555(7)-6.3220(7)], and their stoichiometry may be expressed as Co(8+x)Zn(12-x) [1.7(2) < x < 2.2(2)]. According to a combination of single-crystal X-ray diffraction, neutron powder diffraction, and scanning electron microscopy, atomic site occupancies establish clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d sites, with all additional Co atoms replacing some Zn atoms, a result that can be rationalized by electronic structure calculations. Magnetic measurements and neutron powder diffraction of an equimolar Co:Zn sample confirm ferromagnetism in this phase with a Curie temperature of ∼420 K. Neutron powder diffraction and electronic structure calculations using the local spin density approximation indicate that the spontaneous magnetization of this phase arises exclusively from local moments at the Co atoms. Inspection of the atomic arrangements of Co(8+x)Zn(12-x) reveals that the ß-Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) structure. Structural optimization procedures using the Vienna ab initio simulation package (VASP) and starting from the undistorted, defect Laves phase structure achieved energy minimization at the observed ß-Mn structure type, a result that offers greater insight into the ß-Mn structure type and establishes a closer relationship with the corresponding α-Mn structure (cI58).

SELECTION OF CITATIONS
SEARCH DETAIL
...