Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
J Mol Diagn ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38522838

ABSTRACT

Alterations of the androgen receptor (AR) are associated with resistance to AR-directed therapy in prostate cancer. Thus, it is crucial to develop robust detection methods for AR alterations as predictive biomarkers to enable applicability in clinical practice. We designed and validated five multiplex droplet digital PCR assays for reliable detection of 12 AR targets including AR amplification, AR splice variant 7, and 10 AR hotspot mutations, as well as AR and KLK3 gene expression from plasma-derived cell-free DNA and cell-free RNA. The assays demonstrated excellent analytical sensitivity and specificity ranging from 95% to 100% (95% CI, 75% to 100%). Intrarun and interrun variation analyses revealed a high level of repeatability and reproducibility. The developed assays were applied further in peripheral blood samples from 77 patients with advanced prostate cancer to assess their feasibility in a real-world scenario. Optimizing the reverse transcription of RNA increased the yield of plasma-derived cell-free RNA by 30-fold. Among 23 patients with castration-resistant prostate cancer, 6 patients (26.1%) had one or a combination of several AR alterations, whereas only 2 of 54 patients (3.7%) in the hormone-sensitive stage showed AR alterations. These findings were consistent with other studies and suggest that implementation of comprehensive AR status detection in clinical practice is feasible and can support the treatment decision-making process.

2.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360943

ABSTRACT

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Subject(s)
Insulin Resistance , Intermittent Fasting , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Inflammation/metabolism , Insulin Resistance/genetics , Obesity/genetics , Obesity/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Weight Loss
3.
Science ; 383(6680): 260-261, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38236970

ABSTRACT

Attenuation of cell-free DNA clearance in vivo is an alternative strategy to maximize recovery.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Biomarkers, Tumor/blood , Biomarkers, Tumor/chemistry , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/chemistry , Liquid Biopsy , Humans , Animals , Mice , Sensitivity and Specificity
4.
Mol Cancer ; 22(1): 133, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573301

ABSTRACT

Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Prostatic Neoplasms , Animals , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Metformin/pharmacology , Neoplasm Recurrence, Local , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Trends Genet ; 39(4): 285-307, 2023 04.
Article in English | MEDLINE | ID: mdl-36792446

ABSTRACT

Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Hematologic Neoplasms , Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Neoplasms/genetics , Precision Medicine , Circulating Tumor DNA/genetics , Circulating Tumor DNA/analysis , Machine Learning
7.
PLoS One ; 18(1): e0271016, 2023.
Article in English | MEDLINE | ID: mdl-36626373

ABSTRACT

We constructed a panel of S. pombe strains expressing DNA polymerase ε variants associated with cancer, specifically POLES297F, POLEV411L, POLEL424V, POLES459F, and used these to compare mutation rates determined by canavanine resistance with other selective methods. Canavanine-resistance mutation rates are broadly similar to those seen with reversion of the ade-485 mutation to adenine prototrophy, but lower than 5-fluoroorotic acid (FOA)-resistance rates (inactivation of ura4+ or ura5+ genes). Inactivation of several genes has been associated with canavanine resistance in S. pombe but surprisingly whole genome sequencing showed that 8/8 spontaneous canavanine-resistant mutants have an R175C mutation in the any1/arn1 gene. This gene encodes an α-arrestin-like protein involved in mediating Pub1 ubiquitylation of target proteins, and the phenotypic resistance to canavanine by this single mutation is similar to that shown by the original "can1-1" strain, which also has the any1R175C mutation. Some of the spontaneous mutants have additional mutations in arginine transporters, suggesting that this may marginally increase resistance to canavanine. The any1R175C strain showed internalisation of the Cat1 arginine transporter as previously reported, explaining the canavanine-resistance phenotype.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Canavanine/pharmacology , Canavanine/metabolism , Mutation Rate , Schizosaccharomyces pombe Proteins/metabolism , Mutation , Arginine/metabolism , Arrestins/metabolism
8.
J Transl Med ; 21(1): 54, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36710341

ABSTRACT

BACKGROUND: Clear cell sarcomas (CCSs) are translocated aggressive malignancies, most commonly affecting young adults with a high incidence of metastases and a poor prognosis. Research into the disease is more feasible when adequate models are available. By establishing CCS cell lines from a primary and metastatic lesion and isolating healthy fibroblasts from the same patient, the in vivo process is accurately reflected and aspects of clinical multistep carcinogenesis recapitulated. METHODS: Isolated tumor cells and normal healthy skin fibroblasts from the same patient were compared in terms of growth behavior and morphological characteristics using light and electron microscopy. Tumorigenicity potential was determined by soft agar colony formation assay and in vivo xenograft applications. While genetic differences between the two lineages were examined by copy number alternation profiles, nuclear magnetic resonance spectroscopy determined arginine methylation as epigenetic features. Potential anti-tumor effects of a protein arginine N-methyltransferase type I (PRMT1) inhibitor were elicited in 2D and 3D cell culture experiments using cell viability and apoptosis assays. Statistical significance was calculated by one-way ANOVA and unpaired t-test. RESULTS: The two established CCS cell lines named MUG Lucifer prim and MUG Lucifer met showed differences in morphology, genetic and epigenetic data, reflecting the respective original tissue. The detailed cell line characterization especially in regards to the epigenetic domain allows investigation of new innovative therapies. Based on the epigenetic data, a PRMT1 inhibitor was used to demonstrate the targeted antitumor effect; normal tissue cells isolated and immortalized from the same patient were not affected with the IC50 used. CONCLUSIONS: MUG Lucifer prim, MUG Lucifer met and isolated and immortalized fibroblasts from the same patient represent an ideal in vitro model to explore the biology of CCS. Based on this cell culture model, novel therapies could be tested in the form of PRMT1 inhibitors, which drive tumor cells into apoptosis, but show no effect on fibroblasts, further supporting their potential as promising treatment options in the combat against CCS. The data substantiate the importance of tailored therapies in the advanced metastatic stage of CCS.


Subject(s)
Sarcoma, Clear Cell , Humans , Sarcoma, Clear Cell/genetics , Sarcoma, Clear Cell/metabolism , Sarcoma, Clear Cell/pathology , Cell Line , Enzyme Inhibitors , Arginine/genetics , Arginine/metabolism , Arginine/therapeutic use , Epigenesis, Genetic , Cell Line, Tumor , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/therapeutic use , Repressor Proteins/genetics
9.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36341492

ABSTRACT

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Subject(s)
Lymphoma, T-Cell, Cutaneous , p21-Activated Kinases , Animals , Mice , Genomics , Heterografts , Lymphoma, T-Cell, Cutaneous/drug therapy
10.
Front Pediatr ; 10: 926405, 2022.
Article in English | MEDLINE | ID: mdl-36046479

ABSTRACT

Background: Treatment stratification and response assessment in pediatric sarcomas has relied on imaging studies and surgical/histopathological evidence of vital tumor cells. Such studies and evidence collection processes often involve radiation and/or general anesthesia in children. Cell-free circulating tumor DNA (ctDNA) detection in blood plasma is one available method of so-called liquid biopsies that has been shown to correlate qualitatively and quantitatively with the existence of vital tumor cells in the body. Our clinical observational study focused on the utility and feasibility of ctDNA detection in pediatric Ewing sarcoma (EWS) as a marker of minimal residual disease (MRD). Patients and methods: We performed whole genome sequencing (WGS) to identify the exact breakpoints in tumors known to carry the EWS-FLI1 fusion gene. Patient-specific fusion breakpoints were tracked in peripheral blood plasma using digital droplet PCR (ddPCR) before, during, and after therapy in six children and young adults with EWS. Presence and levels of fusion breakpoints were correlated with clinical disease courses. Results: We show that the detection of ctDNA in the peripheral blood of EWS patients (i) is feasible in the clinical routine and (ii) allows for the longitudinal real-time monitoring of MRD activity in children and young adults. Although changing ctDNA levels correlated well with clinical outcome within patients, between patients, a high variability was observed (inter-individually). Conclusion: ctDNA detection by ddPCR is a highly sensitive, specific, feasible, and highly accurate method that can be applied in EWS for follow-up assessments as an additional surrogate parameter for clinical MRD monitoring and, potentially, also for treatment stratification in the near future.

11.
J Hematol Oncol ; 15(1): 125, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056434

ABSTRACT

BACKGROUND: Analysis of circulating free DNA (cfDNA) is a promising tool for personalized management of colorectal cancer (CRC) patients. Untargeted cfDNA analysis using whole-genome sequencing (WGS) does not need a priori knowledge of the patient´s mutation profile. METHODS: Here we established LIquid biopsy Fragmentation, Epigenetic signature and Copy Number Alteration analysis (LIFE-CNA) using WGS with ~ 6× coverage for detection of circulating tumor DNA (ctDNA) in CRC patients as a marker for CRC detection and monitoring. RESULTS: We describe the analytical validity and a clinical proof-of-concept of LIFE-CNA using a total of 259 plasma samples collected from 50 patients with stage I-IV CRC and 61 healthy controls. To reliably distinguish CRC patients from healthy controls, we determined cutoffs for the detection of ctDNA based on global and regional cfDNA fragmentation patterns, transcriptionally active chromatin sites, and somatic copy number alterations. We further combined global and regional fragmentation pattern into a machine learning (ML) classifier to accurately predict ctDNA for cancer detection. By following individual patients throughout their course of disease, we show that LIFE-CNA enables the reliable prediction of response or resistance to treatment up to 3.5 months before commonly used CEA. CONCLUSION: In summary, we developed and validated a sensitive and cost-effective method for untargeted ctDNA detection at diagnosis as well as for treatment monitoring of all CRC patients based on genetic as well as non-genetic tumor-specific cfDNA features. Thus, once sensitivity and specificity have been externally validated, LIFE-CNA has the potential to be implemented into clinical practice. To the best of our knowledge, this is the first study to consider multiple genetic and non-genetic cfDNA features in combination with ML classifiers and to evaluate their potential in both cancer detection and treatment monitoring. Trial registration DRKS00012890.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Colorectal Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA Copy Number Variations , Early Detection of Cancer/methods , Humans , Mutation
12.
Cancer Cell ; 40(9): 911-913, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36055230

ABSTRACT

In stage II colorectal cancer, adjuvant chemotherapy is controversial, and overtreatment is substantial due to suboptimal risk stratification. In a recent New England Journal of Medicine article reporting from a prospective randomized phase II trial, Tie and colleagues demonstrate how ctDNA-guided risk-stratification reduces the use of adjuvant chemotherapy without compromising recurrence risk.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Chemotherapy, Adjuvant , Circulating Tumor DNA/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prospective Studies
13.
Cell Mol Life Sci ; 79(7): 391, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776213

ABSTRACT

The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models. Transcriptional profiling, phenocopy and rescue experiments identified the short isoform of the lncRNA NEAT1 as a molecular trigger for ALYREF effects in breast cancer. Mechanistically, we found that ALYREF binds to the NEAT1 promoter region to enhance the global NEAT1 transcriptional activity. Importantly, by stabilizing CPSF6, a protein that selectively activates the post-transcriptional generation of the short isoform of NEAT1, as well as by direct binding and stabilization of the short isoform of NEAT1, ALYREF selectively fine-tunes the expression of the short NEAT1 isoform. Overall, our study describes ALYREF as a novel factor contributing to breast carcinogenesis and identifies novel molecular mechanisms of regulation the two isoforms of NEAT1.


Subject(s)
Breast Neoplasms , Nuclear Proteins , RNA, Long Noncoding , RNA-Binding Proteins , Transcription Factors , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Transformation, Neoplastic , Female , Humans , Mice , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Transport , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
14.
Lung Cancer ; 170: 52-57, 2022 08.
Article in English | MEDLINE | ID: mdl-35716631

ABSTRACT

OBJECTIVES: Predicting the outcome of immunotherapy-treated non-small cell lung cancer (NSCLC) patients is challenging. Measuring circulating tumor DNA (ctDNA) in plasma is promising, but its application for outcome delineation needs further refinement. Since most information from the next-generation sequencing (NGS) panel is typically left unused, we aim to integrate more information. MATERIALS AND METHODS: Patient and ctDNA data were compiled from five published studies involving advanced NSCLC. Plasma samples collected prior (t0) and early during (t1) immunotherapy were selected, tracking the changes of the highest t0 variant per gene. Durable benefit (DB, defined as progression free survival ≥ ½ year) was predicted. Performance was quantified using the integrated receiver operating characteristic curve (ROC AUC) and compared with the traditional molecular response (MR). RESULTS: A total of 365 patients were pooled. Seven recurrently mutated genes were selected which optimally predicted DB (ROC AUC: 0.77-0.11+0.10), outperforming the MR predictor (with a ROC AUC: 0.64-0.11+0.11). Inclusion of patient characteristics led to a slight further improvement (ROC AUC: 0.80-0.10+0.09). The model performed satisfactory across all ctDNA platforms despite differences in panel size and content. CONCLUSION: Relative to a non-informative classifier (ROC AUC: 0.5), a twofold improvement in predictive value was achieved compared to MR by an integration of changes across seven selected genes in immunotherapy-treated NSCLC patients, whilst being broadly applicable across ctDNA NGS panels.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Mutation
15.
Cell Mol Life Sci ; 79(6): 326, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35635656

ABSTRACT

Signaling trough p53is a major cellular stress response mechanism and increases upon nutrient stresses such as starvation. Here, we show in a human hepatoma cell line that starvation leads to robust nuclear p53 stabilization. Using BioID, we determine the cytoplasmic p53 interaction network within the immediate-early starvation response and show that p53 is dissociated from several metabolic enzymes and the kinase PAK2 for which direct binding with the p53 DNA-binding domain was confirmed with NMR studies. Furthermore, proteomics after p53 immunoprecipitation (RIME) uncovered the nuclear interactome under prolonged starvation, where we confirmed the novel p53 interactors SORBS1 (insulin receptor signaling) and UGP2 (glycogen synthesis). Finally, transcriptomics after p53 re-expression revealed a distinct starvation-specific transcriptome response and suggested previously unknown nutrient-dependent p53 target genes. Together, our complementary approaches delineate several nodes of the p53 signaling cascade upon starvation, shedding new light on the mechanisms of p53 as nutrient stress sensor. Given the central role of p53 in cancer biology and the beneficial effects of fasting in cancer treatment, the identified interaction partners and networks could pinpoint novel pharmacologic targets to fine-tune p53 activity.


Subject(s)
Signal Transduction , Tumor Suppressor Protein p53 , Carcinoma, Hepatocellular/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Humans , Liver Neoplasms/metabolism , Nutrients , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Fam Cancer ; 21(2): 197-209, 2022 04.
Article in English | MEDLINE | ID: mdl-33948826

ABSTRACT

Pathogenic germline exonuclease domain (ED) variants of POLE and POLD1 cause the Mendelian dominant condition polymerase proof-reading associated polyposis (PPAP). We aimed to describe the clinical features of all PPAP patients with probably pathogenic variants. We identified patients with a variants mapping to the EDs of POLE or POLD1 from cancer genetics clinics, a colorectal cancer (CRC) clinical trial, and systematic review of the literature. We used multiple evidence sources to separate ED variants into those with strong evidence of pathogenicity and those of uncertain importance. We performed quantitative analysis of the risk of CRC, colorectal adenomas, endometrial cancer or any cancer in the former group. 132 individuals carried a probably pathogenic ED variant (105 POLE, 27 POLD1). The earliest malignancy was colorectal cancer at 14. The most common tumour types were colorectal, followed by endometrial in POLD1 heterozygotes and duodenal in POLE heterozygotes. POLD1-mutant cases were at a significantly higher risk of endometrial cancer than POLE heterozygotes. Five individuals with a POLE pathogenic variant, but none with a POLD1 pathogenic variant, developed ovarian cancer. Nine patients with POLE pathogenic variants and one with a POLD1 pathogenic variant developed brain tumours. Our data provide important evidence for PPAP management. Colonoscopic surveillance is recommended from age 14 and upper-gastrointestinal surveillance from age 25. The management of other tumour risks remains uncertain, but surveillance should be considered. In the absence of strong genotype-phenotype associations, these recommendations should apply to all PPAP patients.


Subject(s)
Colorectal Neoplasms , Endometrial Neoplasms , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , DNA Polymerase II/genetics , Endometrial Neoplasms/genetics , Endometrial Neoplasms/therapy , Female , Germ-Line Mutation , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Propylamines
17.
Br J Cancer ; 126(3): 456-463, 2022 02.
Article in English | MEDLINE | ID: mdl-34754095

ABSTRACT

BACKGROUND: The benefit of alpelisib in hormone-receptor-positive (HR+) metastatic breast cancer patients provided clinical evidence for the increasing importance of PIK3CA testing. We performed a comparison of liquid biopsy and tissue-based detection of PIK3CA mutations. MATERIALS AND METHODS: PIK3CA hotspot mutation analysis using a high-resolution SiMSen-Seq assay was performed in plasma from 93/99 eligible patients with HR+/HER2- breast cancer. Additionally, mFAST-SeqS was used to estimate the tumour fractions in plasma samples. In 72/93 patients, matched tissue was available and analysed using a customised Ion Torrent panel. RESULTS: PIK3CA mutations were detected in 48.6% of tissue samples and 47.3% of plasma samples, with identical PIK3CA mutation detected in 24/72 (33.3%) patients both in tissue and plasma. In 10 (13.9%) patients, mutations were only found in plasma, and in 6 (8.3%) patients, PIK3CA mutations found in tissue were not detectable in ctDNA. In 49/93 plasma samples without detectable PIK3CA mutations, 22 (44.9%) samples had elevated tumour fractions, implying true negative results. CONCLUSION: SiMSen-Seq-based detection of PIK3CA mutations in plasma shows advantageous concordance with the tissue analyses. A combination with an untargeted approach for detecting ctDNA fractions may confirm a negative PIK3CA result and enhance the performance of the SiMSen-Seq test.


Subject(s)
Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Estrogen Receptor alpha/metabolism , High-Throughput Nucleotide Sequencing/methods , Liquid Biopsy/methods , Mutation , Receptors, Progesterone/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Female , Humans , Neoplasm Metastasis , Thiazoles/therapeutic use
18.
Clin Cancer Res ; 28(4): 697-707, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34862246

ABSTRACT

PURPOSE: Accurate response assessment during neoadjuvant systemic treatment (NST) poses a clinical challenge. Therefore, a minimally invasive assessment of tumor response based on cell-free circulating tumor DNA (ctDNA) may be beneficial to guide treatment decisions. EXPERIMENTAL DESIGN: We profiled 93 genes in tissue from 193 patients with early breast cancer. Patient-specific assays were designed for 145 patients to track ctDNA during NST in plasma. ctDNA presence and levels were correlated with complete pathological response (pCR) and residual cancer burden (RCB) as well as clinicopathologic characteristics of the tumor to identify potential proxies for ctDNA release. RESULTS: At baseline, ctDNA could be detected in 63/145 (43.4%) patients and persisted in 25/63 (39.7%) patients at mid-therapy (MT) and 15/63 (23.8%) patients at the end of treatment. ctDNA detection at MT was significantly associated with higher RCB (OR = 0.062; 95% CI, 0.01-0.48; P = 0.0077). Of 31 patients with detectable ctDNA at MT, 30 patients (96.8%) were nonresponders (RCB II, n = 8; RCB III, n = 22) and only one patient responded to the treatment (RCB I). Considering all 145 patients with baseline (BL) plasma, none of the patients with RCB 0 and only 6.7% of patients with RCB I had ctDNA detectable at MT, whereas 30.6% and 29.6% of patients with RCB II/III, respectively, had a positive ctDNA result. CONCLUSIONS: Overall, our results demonstrate that the detection and persistence of ctDNA at MT may have the potential to negatively predict response to neoadjuvant treatment and identify patients who will not achieve pCR or be classified with RCB II/III.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Female , Humans , Neoadjuvant Therapy , Neoplasm, Residual/pathology
19.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768746

ABSTRACT

Melanomas are aggressive tumors with a high metastatic potential and an increasing incidence rate. They are known for their heterogeneity and propensity to easily develop therapy-resistance. Nowadays they are one of the most common cancers diagnosed during pregnancy. Due to the difficulty in balancing maternal needs and foetal safety, melanoma is challenging to treat. The aim of this study was to provide a potential model system for the study of melanoma in pregnancy and to illustrate melanoma heterogeneity. For this purpose, a pigmented and a non-pigmented section of a lymph node metastasis from a pregnant patient were cultured under different conditions and characterized in detail. All four culture conditions exhibited different phenotypic, genotypic as well as tumorigenic properties, and resulted in four newly established melanoma cell lines. To address treatment issues, especially in pregnant patients, the effect of synthetic human lactoferricin-derived peptides was tested successfully. These new BRAF-mutated MUG Mel3 cell lines represent a valuable model in melanoma heterogeneity and melanoma pregnancy research. Furthermore, treatment with anti-tumor peptides offers an alternative to conventionally used therapeutic options-especially during pregnancy.


Subject(s)
Cell Culture Techniques/methods , Melanoma/metabolism , Adult , Animals , Cell Line , Cell Line, Tumor , Female , Humans , Lactoferrin/pharmacology , Lymphatic Metastasis , Melanoma/drug therapy , Melanoma/genetics , Mice , Mice, Inbred NOD , Pregnancy , Primary Cell Culture , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/pathology , Xenograft Model Antitumor Assays/methods
20.
Exp Mol Pathol ; 123: 104685, 2021 12.
Article in English | MEDLINE | ID: mdl-34560086

ABSTRACT

Detection of EGFR mutations from blood plasma represents a gentle, non-invasive alternative to rebiopsy and can therefore be used for therapy monitoring of non-small-cell lung cancer (NSCLC) patients. The aim of this project was to investigate whether the Reveal ctDNA™ 28 NGS assay (ArcherDX, Boulder, CO), has a comparable sensitivity and specificity to droplet digital PCR (ddPCR, gold-standard) and is therefore suitable for therapy monitoring of progressing lung cancer patients. First, we validated the NGS assay with a commercially available reference material (SeraCare, Massachusetts, US). Using an input of 22 ng, a sensitivity of 96% and a specificity of 100% could be achieved for variant allele frequencies (VAF) of 0.5%. For variants at a VAF of 0.1% the sensitivity was substantially reduced. Next, 28 plasma samples from 16 patients were analyzed and results were compared to existing ddPCR data. This comparative analysis of patient samples revealed a concordance of 91% between NGS and ddPCR. These results confirm that the Reveal ctDNA™ 28 NGS assay can be used for therapy monitoring of patients under TKI therapy. However, due to the slightly superior sensitivity of ddPCR, a combination of NGS (with broad coverage of a large number of genomic loci) and ddPCR (with targeted highly sensitive detection of specific mutations) might be the ideal approach.


Subject(s)
Carcinoma, Non-Small-Cell Lung/blood , Cell-Free Nucleic Acids/blood , Circulating Tumor DNA/blood , Adult , Aged , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , ErbB Receptors/blood , ErbB Receptors/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Male , Middle Aged , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...