Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3624, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131132

ABSTRACT

The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/ß-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adherens Junctions/metabolism , Arthritis/metabolism , Cell Transformation, Neoplastic/metabolism , Cytoskeletal Proteins/metabolism , Fibroblasts/metabolism , LIM Domain Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Arthritis/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Cadherins/metabolism , Cytoskeletal Proteins/genetics , Female , Homeodomain Proteins , LIM Domain Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts , beta Catenin/metabolism
2.
Sci Rep ; 7(1): 11683, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916770

ABSTRACT

Extracellular adenosine, generated via the concerted action of CD39 and CD73, contributes to T-cell differentiation and function. Adenosine concentrations are furthermore influenced by adenosine deaminase binding protein CD26. Because aberrant T-cell phenotypes had been reported in anti-neutrophil cytoplasmic auto-antibody (ANCA)-associated vasculitis (AAV) patients, an impaired expression of these molecules on T-cells of AAV patients was hypothesized in the present study. While in AAV patients (n = 29) CD26 was increased on CD4+ lymphocytes, CD39 and CD73 were generally reduced on patients' T-cells. In CD4+ cells significant differences in CD73 expression were confined to memory CD45RA- cells, while in CD4- lymphocytes differences were significant in both naïve CD45RA+ and memory CD45RA- cells. The percentage of CD4-CD73+ cells correlated with micro-RNA (miR)-31 expression, a putative regulator of factor inhibiting hypoxia-inducible factor 1 alpha (FIH-1), inversely with serum C-reactive protein (CRP) and positively with estimated glomerular filtration rate (eGFR). No correlation with disease activity, duration, and ANCA profile was found. It remains to be assessed if a decreased CD73 and CD39 expression underlies functional impairment of lymphocytes in AAV patients. Likewise, the relations between frequencies of CD4-CD73+ cells and serum CRP or eGFR require further functional elucidation.


Subject(s)
Adenosine/metabolism , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Apyrase/analysis , Dipeptidyl Peptidase 4/analysis , T-Lymphocytes/pathology , 5'-Nucleotidase , Adolescent , Adult , Aged , Aged, 80 and over , C-Reactive Protein/analysis , Female , GPI-Linked Proteins , Glomerular Filtration Rate , Humans , Male , Middle Aged , Young Adult
3.
Arthritis Res Ther ; 19(1): 40, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28245866

ABSTRACT

BACKGROUND: Rheumatoid arthritis synovial fibroblasts (RASFs) are known to travel via the bloodstream from sites of cartilage destruction to new locations where they reinitiate the destructive processes at distant articular cartilage surfaces. In this study, we examined the role of interleukin (IL)-1-induced cartilage changes and their chemotactic effect on RASF transmigratory capacity. METHODS: To investigate synovial fibroblast (SF) transmigration through endothelial layers, we used a modified Boyden chamber with an endothelioma cell layer (bEnd.5) as a barrier and IL-1-treated murine cartilage explants as a chemotactic stimulus for SFs from human tumor necrosis factor-transgenic (hTNFtg) mice. We injected recombinant IL-1 or collagenase into knee joints of wild-type mice, followed by tail vein injection of fluorescence-labeled hTNFtg SFs. The distribution and intensity of transmigrating hTNFtg SFs were measured by fluorescence reflectance imaging with X-ray coregistration. Toluidine blue staining was performed to evaluate the amount of cartilage destruction. RESULTS: Histomorphometric analyses and in vivo imaging revealed a high degree of cartilage proteoglycan loss after intra-articular IL-1 and collagenase injection, accompanied by an enhanced in vivo extravasation of hTNFtg SFs into the respective knee joints, suggesting that structural cartilage damage contributes significantly to the attraction of hTNFtg SFs into these joints. In vitro results showed that degraded cartilage was directly responsible for the enhanced transmigratory capacity because stimulation with IL-1-treated cartilage, but not with IL-1 or cartilage alone, was required to increase hTNFtg SF migration. CONCLUSIONS: The present data indicate that structural cartilage damage facilitates the migration of arthritic SF into affected joints. The prevention of early inflammatory cartilage damage may therefore help prevent the progression of rheumatoid arthritis and its spread to previously unaffected joints.


Subject(s)
Arthritis, Rheumatoid/metabolism , Cartilage, Articular/metabolism , Fibroblasts/metabolism , Knee Joint/metabolism , Synovial Membrane/metabolism , Animals , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/genetics , Carbocyanines/metabolism , Cartilage, Articular/pathology , Cell Movement/drug effects , Cell Tracking/methods , Fibroblasts/drug effects , Fibroblasts/transplantation , Fluorescent Dyes/metabolism , Humans , Interleukin-1/pharmacology , Mice, Inbred C57BL , Mice, Transgenic , Synovial Membrane/pathology , Time Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
4.
Ann Rheum Dis ; 72(11): 1874-81, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23417988

ABSTRACT

OBJECTIVE: Based on previous data that have linked the small ubiquitin-like modifier-1 (SUMO-1) to the pathogenesis of rheumatoid arthritis (RA), we have investigated the expression of the highly homologous SUMO family members SUMO-2/3 in human RA and in the human tumour necrosis factor α transgenic (hTNFtg) mouse model of RA and studied their role in regulating disease specific matrixmetalloproteinases (MMPs). METHODS: Synovial tissue was obtained from RA and osteoarthritis (OA) patients and used for histological analyses as well as for the isolation of synovial fibroblasts (SFs). The expression of SUMO-2/3 in RA and OA patients as well as in hTNFtg and wild type mice was studied by PCR, western blot and immunostaining. SUMO-2/3 was knocked down using small interfering RNA in SFs, and TNF-α induced MMP production was determined by ELISA. Activation of nuclear factor-κB (NF-κB) was determined by a luciferase activity assay and a transcription factor assay in the presence of the NF-κB inhibitor BAY 11-7082. RESULTS: Expression of SUMO-2 and to a lesser extent of SUMO-3 was higher in RA tissues and RASFs compared with OA controls. Similarly, there was increased expression of SUMO-2 in the synovium and in SFs of hTNFtg mice compared with wild type animals. In vitro, the expression of SUMO-2 but not of SUMO-3 was induced by TNF-α. The knockdown of SUMO-2/3 significantly increased the TNF-α and interleukin (IL)-1ß induced expression of MMP-3 and MMP-13, accompanied by increased NF-κB activity. Induction of MMP-3 and MMP-13 was inhibited by blockade of the NF-κB pathway. TNF-α and IL-1ß mediated MMP-1 expression was not regulated by SUMO-2/3. CONCLUSIONS: Collectively, we show that despite their high homology, SUMO-2/3 are differentially regulated by TNF-α and selectively control TNF-α mediated MMP expression via the NF-κB pathway. Therefore, we hypothesise that SUMO-2 contributes to the specific activation of RASF.


Subject(s)
Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , NF-kappa B/physiology , Small Ubiquitin-Related Modifier Proteins/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , Humans , Mice , Mice, Transgenic , Osteoarthritis/metabolism , Signal Transduction , Synovial Membrane/cytology , Synovial Membrane/metabolism , Tumor Necrosis Factor-alpha/genetics , Ubiquitins/physiology
5.
PLoS One ; 7(12): e52247, 2012.
Article in English | MEDLINE | ID: mdl-23284953

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are effective in treating malignant disorders and were lately suggested to have an impact on non-malignant diseases. However, in some inflammatory conditions like rheumatoid arthritis (RA) the in vivo effect seemed to be moderate. As most TKIs are taken up actively into cells by cell membrane transporters, this study aimed to evaluate the role of such transporters for the accumulation of the TKI Imatinib mesylates in RA synovial fibroblasts as well as their regulation under inflammatory conditions. METHODOLOGY/PRINCIPAL FINDINGS: The transport and accumulation of Imatinib was investigated in transporter-transfected HEK293 cells and human RA synovial fibroblasts (hRASF). Transporter expression was quantified by qRT-PCR. In transfection experiments, hMATE1 showed the highest apparent affinity for Imatinib among all known Imatinib transporters. Experiments quantifying the Imatinib uptake in the presence of specific transporter inhibitors and after siRNA knockdown of hMATE1 indeed identified hMATE1 to mediate Imatinib transport in hRASF. The anti-proliferative effect of Imatinib on PDGF stimulated hRASF was quantified by cell counting and directly correlated with the uptake activity of hMATE1. Expression of hMATE1 was investigated by Western blot and immuno-fluorescence. Imatinib transport under disease-relevant conditions, such as an altered pH and following stimulation with different cytokines, was also investigated by HPLC. The uptake was significantly reduced by an acidic extracellular pH as well as by the cytokines TNFα, IL-1ß and IL-6, which all decreased the expression of hMATE1-mRNA and protein. CONCLUSION/SIGNIFICANCE: The regulation of Imatinib uptake via hMATE1 in hRASF and resulting effects on their proliferation may explain moderate in vivo effects on RA. Moreover, our results suggest that investigating transporter mediated drug processing under normal and pathological conditions is important for developing intracellular acting drugs used in inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid/enzymology , Arthritis, Rheumatoid/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Benzamides/pharmacology , Cell Line , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Cytokines/pharmacology , Humans , Hydrogen-Ion Concentration , Imatinib Mesylate , Interleukin-1beta/pharmacology , Interleukin-6/pharmacology , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Piperazines/pharmacology , Protein Kinase Inhibitors , Pyrimidines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...