Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Rep ; 21: 101759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38590391

ABSTRACT

Patients with Crohn's disease are at increased risk for symptomatic nephrolithiasis. Stones in these patients are most commonly composed of calcium oxalate monohydrate or mixed calcium-oxalate and calcium-phosphate. Precipitation of both minerals depends on urinary pH, calcium, phosphate and oxalate excretion. The present manuscript reports on two patients with Crohn's disease and bowel resection, in whom the onset of symptomatic urolithiasis occurred after repeated infusions of ferric carboxymaltose - a drug, which is known to cause hyperphosphaturia. The present study shows that ferric carboxymaltose-induced hyperphosphaturia can be associated with kidney stone formation and symptomatic urolithiasis, especially in patients treated with calcitriol. Calcitriol has been shown to mitigate ferric carboxymaltose-induced secondary hyperparathyroidism and hyperphosphaturia, but is known to increase urinary calcium excretion. Chemical analysis of recovered stones revealed that they were mixed calcium oxalate and phosphate stones. Ring-like deposition of iron detected by spatially resolved elemental analysis using laser ablation-inductively coupled plasma mass spectrometry, showed that the stones also contained iron. Based on our findings, we propose that patients with inflammatory bowel disease requiring intravenous iron therapy should be carefully monitored for the development of hypophosphatemia and urolithiasis. If hypophosphatemia occurs in such patients, calcitriol should be used with caution.

2.
Article in English | MEDLINE | ID: mdl-27048723

ABSTRACT

The crystal structure of synthetic K2Sc[Si2O6]F has been solved and refined as an incommensurately modulated structure in (3 + 2)-dimensional superspace. This paper describes the tetragonal structure in the superspace group P42/mnm(α,α,0)000s(-α,α,0)0000 [a = 8.9878 (1), c = 8.2694 (2) Å, V = 668.01 (2) Å(3)] with modulation wavevectors q1 = 0.2982 (4)(a* + b*) and q2 = 0.2982 (4)(-a* + b*). Structure refinement taking into account the modulation of positional and ADP parameters for all atoms from 3074 observed main hkl00 and satellite reflections hklmn of first order with single, m·n = 0, and mixed, m·n = ±1, indices converged to a final R value of 0.0514. The structure is a mixed octahedral-tetrahedral framework composed of [ScO4F2] octahedra, [Si4O12] rings and K in variable coordination. Due to the modulation the O atoms move into and out of the first coordination sphere of K leading to a minimum of five and a maximum of 10 interatomic K-O distances up to 3.1 Å. Although this feature is comparable to observations in modulated fresnoite and melilite group compounds, these structures differ from K2Sc[Si2O6]F with respect to their topology. On temperature increase the intensity of the satellite reflections decreases until they disappear just above 443 K. The high-temperature normal structure, in space group P42/mnm, is identical to the room-temperature average structure of K2Sc[Si2O6]F.

3.
Phys Chem Chem Phys ; 18(13): 9220-31, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26975480

ABSTRACT

Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.

4.
J Phys Chem C Nanomater Interfaces ; 120(3): 1795-1807, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26877828

ABSTRACT

Carbon deposition due to the inverse Boudouard reaction (2CO → CO2 + C) has been studied on yttria-stabilized zirconia (YSZ), Y2O3, and ZrO2 in comparison to CH4 by a variety of different chemical, structural, and spectroscopic characterization techniques, including electrochemical impedance spectroscopy (EIS), Fourier-transform infrared (FT-IR) spectroscopy and imaging, Raman spectroscopy, and electron microscopy. Consentaneously, all experimental methods prove the formation of a more or less conducting carbon layer (depending on the used oxide) of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in flowing CO at temperatures above ∼1023 K. All measurements show that during carbon deposition, a more or less substantial surface reduction of the oxides takes place. These results, therefore, reveal that the studied pure oxides can act as efficient nonmetallic substrates for CO-induced growth of highly distorted graphitic carbon with possible important technological implications especially with respect to treatment in pure CO or CO-rich syngas mixtures. Compared to CH4, more carbon is generally deposited in CO under otherwise similar experimental conditions. Although Raman and electron microscopy measurements do not show substantial differences in the structure of the deposited carbon layers, in particular, electrochemical impedance measurements reveal major differences in the dynamic growth process of the carbon layer, eventually leading to less percolated islands and suppressed metallic conductivity in comparison to CH4-induced graphite.

5.
Article in English | MEDLINE | ID: mdl-26830802

ABSTRACT

Single-crystal X-ray diffraction of Cs3ScSi6O15 shows the presence of main reflections and satellite reflections up to the fourth order along the c* direction. The (3+1)-dimensional incommensurately modulated structure was solved in superspace group X3m1(00gamma)0s0 [a = 13.861 (1), c = 6.992 (1) Å, V = 1163.4 (2) Å(3)] with a modulation wavevector q = 0.14153 (2)c*. Refinement of three modulation waves for positional and anisotropic displacement parameter values for all atoms converged to R(obs) values for all, main and satellite reflections of first, second and third order of 0.0200, 0.0166, 0.0181, 0.0214 and 0.0303, respectively. Cs3ScSi6O15 forms a mixed tetrahedral-octahedral framework with prominent six-membered rings of [SiO4]-tetrahedra interconnected by [ScO6]-octahedra. Apart from Sc, all atoms are strongly affected by positional modulation with maximum atomic displacements of up to 0.93 Å causing rigid polyhedral arrangements to perform tilt and twist movements relative to each other, such as a rotation of the Sc-octahedra around the 3-axis by over 38°. Cs has an irregular coordination environment; however, considering distances up to 3.5 Å, the bond-valence sum changes by no more than 0.02 as a function of t and thus overall kept at a level of ca 1.075.

6.
IUCrJ ; 2(Pt 2): 218-29, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25866659

ABSTRACT

More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

7.
Inorg Chem ; 53(24): 13247-57, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25474310

ABSTRACT

The kinetic stability of pure and yttrium-doped tetragonal zirconia (ZrO2) polymorphs prepared via a pathway involving decomposition of pure zirconium and zirconium + yttrium isopropoxide is reported. Following this preparation routine, high surface area, pure, and structurally stable polymorphic modifications of pure and Y-doped tetragonal zirconia are obtained in a fast and reproducible way. Combined analytical high-resolution in situ transmission electron microscopy, high-temperature X-ray diffraction, and chemical and thermogravimetric analyses reveals that the thermal stability of the pure tetragonal ZrO2 structure is very much dominated by kinetic effects. Tetragonal ZrO2 crystallizes at 400 °C from an amorphous ZrO2 precursor state and persists in the further substantial transformation into the thermodynamically more stable monoclinic modification at higher temperatures at fast heating rates. Lower heating rates favor the formation of an increasing amount of monoclinic phase in the product mixture, especially in the temperature region near 600 °C and during/after recooling. If the heat treatment is restricted to 400 °C even under moist conditions, the tetragonal phase is permanently stable, regardless of the heating or cooling rate and, as such, can be used as pure catalyst support. In contrast, the corresponding Y-doped tetragonal ZrO2 phase retains its structure independent of the heating or cooling rate or reaction environment. Pure tetragonal ZrO2 can now be obtained in a structurally stable form, allowing its structural, chemical, or catalytic characterization without in-parallel triggering of unwanted phase transformations, at least if the annealing or reaction temperature is restricted to T ≤ 400 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...