Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(2)2023 01 26.
Article in English | MEDLINE | ID: mdl-36851566

ABSTRACT

The Marburg and Ebola filoviruses cause a severe, often fatal, disease in humans and nonhuman primates but have only subclinical effects in bats, including Egyptian rousettes, which are a natural reservoir of Marburg virus. A fundamental question is why these viruses are highly pathogenic in humans but fail to cause disease in bats. To address this question, we infected one cohort of Egyptian rousette bats with Marburg virus and another cohort with Ebola virus and harvested multiple tissues for mRNA expression analysis. While virus transcripts were found primarily in the liver, principal component analysis (PCA) revealed coordinated changes across multiple tissues. Gene signatures in kidney and liver pointed at induction of vasodilation, reduction in coagulation, and changes in the regulation of iron metabolism. Signatures of immune response detected in spleen and liver indicated a robust anti-inflammatory state signified by macrophages in the M2 state and an active T cell response. The evolutionary divergence between bats and humans of many responsive genes might provide a framework for understanding the differing outcomes upon infection by filoviruses. In this study, we outline multiple interconnected pathways that respond to infection by MARV and EBOV, providing insights into the complexity of the mechanisms that enable bats to resist the disease caused by filoviral infections. The results have the potential to aid in the development of new strategies to effectively mitigate and treat the disease caused by these viruses in humans.


Subject(s)
Chiroptera , Ebolavirus , Filoviridae Infections , Hemorrhagic Fever, Ebola , Marburgvirus , Humans , Animals , Hemorrhagic Fever, Ebola/veterinary , Ebolavirus/genetics , Liver , Marburgvirus/genetics
2.
Nat Biotechnol ; 40(11): 1680-1689, 2022 11.
Article in English | MEDLINE | ID: mdl-35697804

ABSTRACT

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Immunity, Cellular , Polymerase Chain Reaction , T-Lymphocytes
3.
Am J Physiol Heart Circ Physiol ; 308(8): H830-40, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25659485

ABSTRACT

The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 µm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 µl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure.


Subject(s)
Capillaries/pathology , Coronary Vessels/pathology , Heart Failure/pathology , Myocardial Reperfusion Injury/pathology , Animals , Capillaries/physiopathology , Coronary Stenosis/pathology , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Fractional Flow Reserve, Myocardial , Heart Failure/physiopathology , Male , Myocardial Reperfusion Injury/physiopathology , Rats , Rats, Sprague-Dawley
4.
Antimicrob Agents Chemother ; 57(11): 5457-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23979736

ABSTRACT

Glutathione is a tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) thiol compound existing in many bacteria and maintains a proper cellular redox state, thus protecting cells against toxic substances such as reactive oxygen species. Polyamines (spermine and spermidine) are low-molecular-weight aliphatic polycations ubiquitously presenting in all living cells and modulate many cellular functions. We previously reported that exogenous polyamines significantly enhanced ß-lactam susceptibility of ß-lactam-associated multidrug-resistant Acinetobacter baumannii. In this study, three genes differentially associated with the polyamine effects on ß-lactam susceptibility were identified by transposon mutagenesis of A. baumannii ATCC 19606. All three genes encoded components of membrane transport systems. Inactivation of one of the genes encoding a putative glutathione transport ATP-binding protein increased the accumulation of intracellular glutathione (∼150 to ∼200%) and significantly decreased the polyamine effects on ß-lactam susceptibility in A. baumannii ATCC 19606. When the cells were grown with polyamines, the levels of intracellular glutathione in A. baumannii ATCC 19606 significantly decreased from ∼0.5 to ∼0.2 nmol, while the levels of extracellular glutathione were correspondingly increased. However, the levels of total glutathione (intra- plus extracellular) were unchanged when the cells were grown with or without polyamines. Overall, these results suggest that exogenous polyamines induce glutathione export, resulting in decreased levels of intracellular glutathione, which may produce an improper cellular redox state that is associated with the polyamine-mediated ß-lactam susceptibility of A. baumannii. This finding may provide a clue for development of new antimicrobial agents and/or novel strategies to treat multidrug-resistant A. baumannii.


Subject(s)
Acinetobacter baumannii/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Genes, Bacterial , Glutathione/metabolism , Membrane Transport Proteins/genetics , Spermidine/pharmacology , Spermine/pharmacology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Aztreonam/pharmacology , Biological Transport/drug effects , Carbenicillin/pharmacology , DNA Transposable Elements , Drug Resistance, Multiple, Bacterial/genetics , Homeostasis , Membrane Transport Proteins/metabolism , Mutagenesis , Oxidation-Reduction , beta-Lactams/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...