Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Bone Miner Res ; 37(6): 1097-1116, 2022 06.
Article in English | MEDLINE | ID: mdl-35060644

ABSTRACT

Articular cartilage (AC) is essential for body movement but is highly susceptible to degenerative diseases and has poor self-repair capacity. To improve current subpar regenerative treatments, developmental mechanisms of AC should be clarified and, specifically, how its postnatal multizone organization is acquired. Primary cilia are cell surface organelles crucial for mammalian tissue morphogenesis. Although their importance for chondrocyte function is appreciated, their specific roles in postnatal AC morphogenesis remain unclear. To explore these mechanisms, we used a murine conditional loss-of-function approach (Ift88-flox) targeting joint-lineage progenitors (Gdf5Cre) and monitored postnatal knee AC development. Joint formation and growth up to juvenile stages were largely unaffected. However, mature AC (aged 2 months) exhibited disorganized extracellular matrix, decreased aggrecan and collagen II due to reduced gene expression (not increased catabolism), and marked reduction of AC modulus by 30%-50%. In addition, and unexpectedly, we discovered that tidemark patterning was severely disrupted, as was hedgehog signaling, and exhibited specificity based on regional load-bearing functions of AC. Interestingly, Prg4 expression was markedly increased in highly loaded sites in mutants. Together, our data provide evidence that primary cilia orchestrate postnatal AC morphogenesis including tidemark topography, zonal matrix composition, and ambulation load responses. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cartilage, Articular , Animals , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Cilia/metabolism , Hedgehog Proteins/metabolism , Mice , Signal Transduction/physiology
2.
Dev Biol ; 477: 49-63, 2021 09.
Article in English | MEDLINE | ID: mdl-34010606

ABSTRACT

Previous studies on mouse embryo limbs have established that interzone mesenchymal progenitor cells emerging at each prescribed joint site give rise to joint tissues over fetal time. These incipient tissues undergo structural maturation and morphogenesis postnatally, but underlying mechanisms of regulation remain unknown. Hox11 genes dictate overall zeugopod musculoskeletal patterning and skeletal element identities during development. Here we asked where these master regulators are expressed in developing limb joints and whether they are maintained during postnatal zeugopod joint morphogenesis. We found that Hoxa11 was predominantly expressed and restricted to incipient wrist and ankle joints in E13.5 mouse embryos, and became apparent in medial and central regions of knees by E14.5, though remaining continuously dormant in elbow joints. Closer examination revealed that Hoxa11 initially characterized interzone and neighboring cells and was then restricted to nascent articular cartilage, intra joint ligaments and structures such as meniscal horns over prenatal time. Postnatally, articular cartilage progresses from a nondescript cell-rich, matrix-poor tissue to a highly structured, thick, zonal and mechanically competent tissue with chondrocyte columns over time, most evident at sites such as the tibial plateau. Indeed, Hox11 expression (primarily Hoxa11) was intimately coupled to such morphogenetic processes and, in particular, to the topographical rearrangement of chondrocytes into columns within the intermediate and deep zones of tibial plateau that normally endures maximal mechanical loads. Revealingly, these expression patterns were maintained even at 6 months of age. In sum, our data indicate that Hox11 genes remain engaged well beyond embryonic synovial joint patterning and are specifically tied to postnatal articular cartilage morphogenesis into a zonal and resilient tissue. The data demonstrate that Hox11 genes characterize adult, terminally differentiated, articular chondrocytes and maintain region-specificity established in the embryo.


Subject(s)
Cartilage, Articular/embryology , Chondrogenesis/genetics , Genes, Homeobox , Synovial Membrane/embryology , Animals , Chondrogenesis/physiology , Extremities/embryology , Gene Expression Regulation, Developmental , Genes, Reporter , Green Fluorescent Proteins/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL