Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Water Res ; 260: 121897, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38870863

ABSTRACT

Perfluoroalkyl acids (PFAAs) are ubiquitous environmental contaminants of global concern, and adsorption processes are the most widely used technologies to remove PFAAs from water. However, there remains little data on the ways that specific water matrix constituents inhibit the adsorption of PFAAs on different adsorbents. In this study, we evaluated the adsorption of 13 PFAAs on two styrene-functionalized ß-cyclodextrin (StyDex) polymers, an activated carbon (AC), and an anion-exchange resin (AER) in the absence and presence of specific water matrix constituents (16 unique water matrices) in batch experiments. All four adsorbents exhibited some extent of adsorption inhibition in the presence of inorganic ions and/or humic acid (HA) added as a surrogate for natural organic matter. Two PFAAs (C5-C6 perfluorocarboxylic acids (PFCAs)) were found to exhibit relatively weak adsorption and five PFAAs (C6-C8 perfluorosulfonic acids (PFSAs) and C9-C10 PFCAs) were found to exhibit relatively strong adsorption on all four adsorbents across all matrices. Adsorption inhibition was the greatest in the presence of Ca2+ (direct site competition) and HA (direct site competition and pore blockage) for AC, NO3- (direct site competition) and Ca2+ (chemical complexation) for the AER, and SO42- (compression of the double layer) for the StyDex polymers. The pattern of adsorption inhibition of both StyDex polymers were similar to each other but different from AC and AER, which demonstrates the distinctive PFAA adsorption mechanism on StyDex polymers. The unique performance of each type of adsorbent confirms unique adsorption mechanisms that result in unique patterns of adsorption inhibition in the presence of matrix constituents. These insights could be used to develop models to predict the performance of these adsorbents in real water matrices and afford rational selection of adsorbents based on water chemistry for specific applications.


Subject(s)
Anion Exchange Resins , Charcoal , Water Pollutants, Chemical , beta-Cyclodextrins , Adsorption , beta-Cyclodextrins/chemistry , Anion Exchange Resins/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Fluorocarbons/chemistry , Water Purification/methods , Polymers/chemistry
2.
ACS Appl Mater Interfaces ; 16(22): 28409-28422, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768313

ABSTRACT

Cross-linked ß-cyclodextrin (ß-CD) polymers are promising adsorbents for the removal of per- and polyfluoroalkyl substances (PFAS) from contaminated water sources, including contaminated groundwater, drinking water, and wastewater. We previously reported porous, styrene-functionalized ß-cyclodextrin (StyDex) polymers derived from radical polymerization with vinyl comonomers. Because of the versatility of these polymerizations, StyDex polymer compositions are tunable, which facilitates efforts to establish structure-adsorption relationships and to discover improved materials. Here, we evaluate the material properties and PFAS adsorption of 20 StyDex derivatives with varied comonomer structure and loading, regiochemistry of styrene placement on the CD monomer, and CD size. A StyDex polymer containing N,N'-dimethylbutyl ammonium ions exhibited the most effective PFAS adsorption in batch experiments. Furthermore, a StyDex polymer containing ß-CD exhibited size-selective host-guest interactions with perfluoroalkyl acids (PFAAs) and neutral contaminants in aqueous electrolyte when compared to similar polymers containing either α-CD or γ-CD. Polymers based on ß-CD monomers with an average of seven styrene groups randomly positioned over the 21 available hydroxyl groups performed similarly to those based on a ß-CD monomer functionalized regiospecifically at each of the seven 6' positions. The former ß-CD monomer is prepared in a single step from unmodified ß-CD, so the ability to use it without compromising performance demonstrates promise for developing economically competitive adsorbents. These results offered important insights into structure-adsorption properties of StyDex polymers and will inform the design of improved StyDex formulations.

3.
Innovation (Camb) ; 5(4): 100612, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38756954

ABSTRACT

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.

5.
Environ Sci Technol ; 57(48): 19624-19636, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37934073

ABSTRACT

Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked ß-cyclodextrin (ß-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked ß-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for ß-CD polymers to remediate TrOCs from complex water matrices.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , beta-Cyclodextrins , Wastewater , Polymers , Water Pollutants, Chemical/analysis , Charcoal , Water Purification/methods , Adsorption
6.
Environ Sci Technol ; 57(38): 14351-14362, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37696050

ABSTRACT

This study elucidates per- and polyfluoroalkyl substance (PFAS) fingerprints for specific PFAS source types. Ninety-two samples were collected from aqueous film-forming foam impacted groundwater (AFFF-GW), landfill leachate, biosolids leachate, municipal wastewater treatment plant effluent (WWTP), and wastewater effluent from the pulp and paper and power generation industries. High-resolution mass spectrometry operated with electrospray ionization in negative mode was used to quantify up to 50 target PFASs and screen and semi-quantify up to 2,266 suspect PFASs in each sample. Machine learning classifiers were used to identify PFASs that were diagnostic of each source type. Four C5-C7 perfluoroalkyl acids and one suspect PFAS (trihydrogen-substituted fluoroethernonanoic acid) were diagnostic of AFFF-GW. Two target PFASs (5:3 and 6:2 fluorotelomer carboxylic acids) and two suspect PFASs (4:2 fluorotelomer-thia-acetic acid and N-methylperfluoropropane sulfonamido acetic acid) were diagnostic of landfill leachate. Biosolids leachates were best classified along with landfill leachates and N-methyl and N-ethyl perfluorooctane sulfonamido acetic acid assisted in that classification. WWTP, pulp and paper, and power generation samples contained few target PFASs, but fipronil (a fluorinated insecticide) was diagnostic of WWTP samples. Our results provide PFAS fingerprints for known sources and identify target and suspect PFASs that can be used for source allocation.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Biosolids , Acetic Acid , Machine Learning
7.
J Water Health ; 21(9): 1143-1157, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37756186

ABSTRACT

Antibiotic residues in the environment threaten soil and aquatic organisms and human and livestock health through the building of antimicrobial resistance. Manure spreading associated with animal agriculture is one source of environmental antibiotic residues. To better understand the risk of contamination, we studied the adsorption of erythromycin, a model macrolide antibiotic used across human and animal medicine. We conducted a series of equilibrium batch experiments to determine the kinetics and extent of adsorption and a continuous-flow column adsorption experiment to observe non-equilibrium adsorption patterns. We determined that the adsorption equilibration time to soil was approximately 72 h in our batch experiments. Erythromycin adsorbed to soil relatively strongly (K = 8.01 × 10-2 L/mg; qmax = 1.53 × 10-3 mg/mg), adsorbed to the soil in the presence of manure with less affinity (K = 1.99 × 10-4 L/mg) at a soil: manure ratio of 10:1 by mass, and did not adsorb to manure across the solid ratios tested. We observed multi-phased adsorption of erythromycin to the soil during the non-equilibrium column experiment, which was largely absent from the treatments with both soil and manure present. These results suggest that erythromycin is more mobile in the environment when introduced with manure, which is likely the largest source of agriculturally sourced environmental antibiotics.


Subject(s)
Erythromycin , Soil , Animals , Humans , Manure , Agriculture , Anti-Bacterial Agents
8.
Water Res ; 244: 120497, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37619306

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are environmental contaminants of concern. Techniques that quantify total organic fluorine (TOF) such as the adsorbable organic fluorine (AOF) and extractable organic fluorine (EOF) methods are important for PFAS risk assessments. The objective of this study was to systematically evaluate each step of the AOF (loading, washing, combustion) and EOF (loading, washing, elution, combustion) methods for the recovery of ten ultrashort-, short-, and long-chain unsubstituted perfluoroalkyl acids (PFAAs). We measured the overall recovery of fluoride for each method for each PFAA, and the recovery of each PFAA around the loading, washing, and elution steps. We also measured the combustion efficiency of each PFAA by direct combustion. The overall AOF and EOF recovery ranged from 9.3%-103.3% to 21.0%-108.1%, respectively, with higher recoveries measured for PFAAs with increasing chain length in both methods. The three ultrashort-chain PFAAs (trifluoroacetic acid, perfluoropropionic acid, and perfluoropropanesulfonic acid) exhibited the lowest overall recoveries from 9.3-25.2% for AOF and 21.0-51.5% for EOF. We found that decreases in the overall recovery are the result of losses of ultrashort- and short-chain PFAAs during the washing step and the incomplete mineralization of perfluoroalkyl sulfonic acids during combustion for AOF and incomplete elution of short- and long-chain PFAAs and the loss of ultrashort-chain PFAAs during the washing step for EOF. Our data suggest that the EOF method is more appropriate than the AOF method for measuring TOF in samples containing ultrashort- and short-chain PFAAs and that methodological improvements are possible with a focus on the washing, elution, and combustion steps.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorine , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Sulfonic Acids
9.
Environ Sci Technol ; 57(34): 12819-12828, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590049

ABSTRACT

One potential source of per- and polyfluoroalkyl substances (PFASs) in electronics fabrication wastewater are the organofluorine-containing compounds used in photolithography materials such as photoresists and top antireflective coatings (TARCs). However, the exact identities of these constituents are unknown and transformation reactions that may occur during photolithography may result in the formation of unknown or unexpected PFASs. To address this knowledge gap, we acquired five commercially relevant photolithography materials, characterized the occurrence of organofluorine-containing compounds in each material, and performed simulated photolithography experiments to stimulate any potential transformation reactions. We found that photoresists and TARCs have total fluorine (TF) concentrations in the g L-1 range, similar to the levels of other industrial and commercial products. However, the target and suspect PFASs present in these materials can only explain up to 20% of the TF in a material. We evaluated wastewater samples collected after simulated photolithography experiments and used a mass balance approach to assess the extent of transformations. Although a number of target, suspect, and nontarget PFASs were identified in the wastewater samples, the extent of transformation was limited and the fluorine contained in the PFASs could not explain more than an additional 1% of the TF in the photolithography materials.


Subject(s)
Fluorine , Wastewater , Electronics , Industry
10.
Environ Sci Technol ; 57(28): 10404-10414, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37404141

ABSTRACT

Despite decades of micropollutant (MP) monitoring at wastewater treatment plants (WWTPs), we lack a fundamental understanding of the time-varying metabolic processes driving MP biotransformations. To address this knowledge gap, we collected 24-h composite samples from the influent and effluent of the conventional activated sludge (CAS) process at a WWTP over 14 consecutive days. We used liquid chromatography and high-resolution mass spectrometry to (i) quantify 184 MPs in the influent and effluent of the CAS process; (ii) characterize temporal dynamics of MP removal and biotransformation rate constants; and (iii) discover biotransformations linked to temporally variable MP biotransformation rate constants. We measured 120 MPs in at least one sample and 66 MPs in every sample. There were 24 MPs exhibiting temporally variable removal throughout the sampling campaign. We used hierarchical clustering analysis to reveal four temporal trends in biotransformation rate constants and found MPs with specific structural features co-located in the four clusters. We screened our HRMS acquisitions for evidence of specific biotransformations linked to structural features among the 24 MPs. Our analyses reveal that alcohol oxidations, monohydroxylations at secondary or tertiary aliphatic carbons, dihydroxylations of vic-unsubstituted rings, and monohydroxylations at unsubstituted rings are biotransformations that exhibit variability on daily timescales.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Sewage/analysis , Biotransformation , Water Purification/methods , Environmental Monitoring , Plastics
11.
Water Res ; 242: 120214, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37329718

ABSTRACT

Human-induced antibiotic pollution in the world's large rivers poses significant risk to riverine ecosystems, water quality, and human health. This study identified geophysical and socioeconomic factors driving antibiotic pollution in the Yangtze River by quantifying 83 target antibiotics in water and sediment samples collected in its 6300-km-long reach, followed by source apportionment and statistical modeling. Total antibiotic concentrations ranged between 2.05-111 ng/L in water samples and 0.57-57.9 ng/g in sediment samples, contributed predominantly by veterinary antibiotics, sulfonamides and tetracyclines, respectively. Antibiotic compositions were clustered according to three landform regions (plateau, mountain-basin-foothill, and plains), resulting from varying animal production practices (cattle, sheep, pig, poultry, and aquaculture) in the sub-basins. Population density, animal production, total nitrogen concentration, and river water temperature are directly associated with antibiotic concentrations in the water samples. This study revealed that the species and production of food animals are key determinants of the geographic distribution pattern of antibiotics in the Yangtze River. Therefore, effective strategies to mitigate antibiotic pollution in the Yangtze River should include proper management of antibiotic use and waste treatment in animal production.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Animals , Swine , Cattle , Sheep , Anti-Bacterial Agents/analysis , Rivers , Ecosystem , Environmental Monitoring/methods , Tetracyclines , China , Water Pollutants, Chemical/analysis
12.
ACS Cent Sci ; 8(5): 663-669, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35647288

ABSTRACT

Cross-linked polymers containing ß-cyclodextrin (ß-CD) are promising adsorbents with demonstrated removal performances for per- and polyfluoroalkyl substances (PFASs) from contaminated water sources. Despite the promising performance of some ß-CD-based adsorbents for PFAS removal, many of these materials are not amenable for rational performance improvement or addressing fundamental questions about the PFAS adsorption mechanisms. These ambiguities arise from the poorly defined structure of the cross-linked polymers, especially with respect to the random substitution patterns of the cyclodextrins as well as side reactions that modify the structures of some cross-linkers. Here, we report a new ß-CD polymer platform in which styrene groups are covalently attached to ß-CD to form a discrete monomer that is amenable to radical polymerization. This monomer was polymerized with styrene and methacrylate comonomers to provide three ß-CD polymers with high specific surface areas and high isolated yields (all >93%). A ß-CD polymer copolymerized with a methacrylate bearing a cationic functional group achieved nearly 100% removal for eight anionic PFASs (initial concentration of 1 µg/L for each compound) in nanopure water at an exceedingly low adsorbent loading of 1 mg L-1, as compared to previous cyclodextrin polymers that required loadings at least 1 order of magnitude higher to achieve an equivalent degree of PFAS removal. Furthermore, when the adsorbents were studied in a challenging salt matrix, we observed that long-chain PFAS adsorption was controlled by a complementary interplay of hydrophobic and electrostatic interactions, whereas short-chain PFASs primarily relied on electrostatic interactions. This approach demonstrates great promise for anionic PFAS removal, and we anticipate that new compositions will be tailored using the versatility of radical polymerization to simultaneously target PFASs and other classes of micropollutants in the future.

13.
Environ Sci Technol Lett ; 9(6): 473-481, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35719859

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are important environmental contaminants, yet relatively few analytical reference standards exist for this class. Nontarget analyses performed by means of high-resolution mass spectrometry (HRMS) are increasingly common for the discovery and identification of PFASs in environmental and biological samples. The certainty of PFAS identifications made via HRMS must be communicated through a reliable and harmonized approach. Here, we present a confidence scale along with identification criteria specific to suspect or nontarget analysis of PFASs by means of nontarget HRMS. Confidence levels range from level 1a-"Confirmed by Reference Standard," and level 1b-"Indistinguishable from Reference Standard," to level 5-"Exact Masses of Interest," which are identified by suspect screening or data filtering, two common forms of feature prioritization. This confidence scale is consistent with general criteria for communicating confidence in the identification of small organic molecules by HRMS (e.g., through a match to analytical reference standards, library MS/MS, and/or retention times) but incorporates the specific conventions and tools used in PFAS classification and analysis (e.g., detection of homologous series and specific ranges of mass defects). Our scale clarifies the level of certainty in PFAS identification and, in doing so, facilitates more efficient identification.

14.
Sci Total Environ ; 824: 153711, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35149076

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) used in aqueous film-forming foam (AFFF) comprise some perfluoroalkyl substances but a larger variety of polyfluoroalkyl substances. Despite their abundance in AFFF, information is lacking on the potential transformation of these polyfluoroalkyl substances. Due to the biological and chemical stability of the repeating perfluoroalkyl -(CF2)n- moiety common to all known AFFF-derived PFASs, it is not immediately evident whether the microbial biotransformation mechanisms observed for other organic contaminants also govern the microbial biotransformation of polyfluoroalkyl substances. Herein, we aim to: 1) review the literature on the aerobic or anaerobic microbial biotransformation of AFFF-derived polyfluoroalkyl substances in environmental media; 2) compile and summarize proposed microbial biotransformation pathways for major classes of polyfluoroalkyl substances; 3) identify the dominant biotransformation intermediates and terminal biotransformation products; and 4) discuss these findings in the context of environmental monitoring and source allocation. This analysis revealed that much more is currently known about aerobic microbial biotransformation of polyfluoroalkyl substances, as compared to anaerobic biotransformation. Further, there are some similarities in microbial biotransformations of fluorotelomer and electrochemical fluorination-derived polyfluoroalkyl substances, but differences may be largely due to head group composition. Dealkylation, oxidation, and hydrolytic reactions appear to be particularly important for microbial biotransformation of AFFF-derived polyfluoroalkyl substances, and these biotransformations may lead to formation of some semi-stable intermediates. Finally, this review discusses key knowledge gaps and opportunities for further research.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Biotransformation , Environmental Monitoring , Fluorocarbons/analysis , Water/analysis , Water Pollutants, Chemical/analysis
15.
Environ Sci Technol ; 56(2): 984-994, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34939795

ABSTRACT

The goal of this research was to identify functional groups that determine rates of micropollutant (MP) biotransformations performed by wastewater microbial communities. To meet this goal, we performed a series of incubation experiments seeded with four independent wastewater microbial communities and spiked them with a mixture of 40 structurally diverse MPs. We collected samples over time and used high-resolution mass spectrometry to estimate biotransformation rate constants for each MP in each experiment and to propose structures of 46 biotransformation products. We then developed random forest models to classify the biotransformation rate constants based on the presence of specific functional groups or observed biotransformations. We extracted classification importance metrics from each random forest model and compared them across wastewater microbial communities. Our analysis revealed 30 functional groups that we define as either biotransformation promoters, biotransformation inhibitors, structural features that can be biotransformed based on uncharacterized features of the wastewater microbial community, or structural features that are not rate-determining. Our experimental data and analysis provide novel insights into MP biotransformations that can be used to more accurately predict MP biotransformations or to inform the design of new chemical products that may be more readily biodegradable during wastewater treatment.


Subject(s)
Microbiota , Water Pollutants, Chemical , Water Purification , Biotransformation , Wastewater , Water Pollutants, Chemical/analysis
16.
Water Res ; 209: 117938, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34910992

ABSTRACT

Cyclodextrin polymers (CDPs) are emerging adsorbents with demonstrated potential to remove perfluoroalkyl acids (PFAAs) from water. However, little is known about how the physicochemical properties of different types of CDPs determine PFAA adsorption on CDPs. In this study, we investigated the adsorption performance of 34 CDPs which consist of 14 different crosslinkers and exhibit a wide range of physicochemical properties. The performance metrics included adsorption kinetics, equilibrium adsorption density, and adsorption affinity for six PFAAs. We then used complementary bivariate and multivariate analyses to discover relationships between sixteen measurable physicochemical properties of the CDPs and their performance as adsorbents. We found that: (1) CDPs with a less negative or more positive surface charge will exhibit enhanced adsorption of all types of PFAAs; (2) CDPs with greater porosity and surface area will exhibit enhanced adsorption kinetics for all types of PFAAs; (3) CDPs with greater crosslinker content will exhibit enhanced adsorption of short-chain PFAAs; (4) CDPs containing more hydrophobic crosslinkers will exhibit enhanced equilibrium adsorption density and adsorption affinity for longer-chain PFAAs; and (5) CDPs with smaller particle sizes will exhibit enhanced adsorption kinetics and equilibrium adsorption density for all PFAAs. These insights will enable the further development of CDPs and other novel adsorbents to optimize their performance for removing PFAAs during water and wastewater treatment or groundwater remediation.

17.
Environ Sci Process Impacts ; 23(10): 1554-1565, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34550138

ABSTRACT

Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Water , Water Pollutants, Chemical/analysis , Workflow
18.
Environ Sci Technol ; 55(11): 7237-7245, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33983714

ABSTRACT

The source tracking of per- and polyfluoroalkyl substances (PFASs) is a new and increasingly necessary subfield within environmental forensics. We define PFAS source tracking as the accurate characterization and differentiation of multiple sources contributing to PFAS contamination in the environment. PFAS source tracking should employ analytical measurements, multivariate analyses, and an understanding of PFAS fate and transport within the framework of a conceptual site model. Converging lines of evidence used to differentiate PFAS sources include: identification of PFASs strongly associated with unique sources; the ratios of PFAS homologues, classes, and isomers at a contaminated site; and a site's hydrogeochemical conditions. As the field of PFAS source tracking progresses, the development of new PFAS analytical standards and the wider availability of high-resolution mass spectral data will enhance currently available analytical capabilities. In addition, multivariate computational tools, including unsupervised (i.e., exploratory) and supervised (i.e., predictive) machine learning techniques, may lead to novel insights that define a targeted list of PFASs that will be useful for environmental PFAS source tracking. In this Perspective, we identify the current tools available and principal developments necessary to enable greater confidence in environmental source tracking to identify and apportion PFAS sources.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 55(4): 2346-2356, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33497568

ABSTRACT

The goals of this study were to improve our understanding of the types of per- and polyfluoroalkyl substances (PFASs) that occur in wastewater from electronics fabrication facilities (fabs) and to assess the relative concentrations of PFAS species. We collected wastewater samples from three fabs in the United States, analyzed the samples by means of high-resolution mass spectrometry, and implemented complementary target and nontarget analyses. Twelve of 25 target PFASs were quantified in at least one sample, and five perfluorocarboxylates and perfluorobutane sulfonate (PFBS) were quantified in all samples. PFBS was quantified at the highest concentration among the samples (8040 ng L-1) and we expect that its presence is related to the use of photoacid generators during photolithography. The sum concentrations of the target PFASs in the diluted discharge samples from each fab were 623, 394, and 376 ng L-1. Nontarget analysis revealed the presence of 41 homologous series of PFASs comprising 133 homologues. We proposed structures for 15 homologous series of nontarget PFASs, six of which are reported here for the first time. Using an approach for semiquantification of nontarget PFASs, we estimated that the sum concentrations of target and nontarget PFASs in the diluted discharge samples from each fab were 1490, 78 700, and 2170 ng L-1. Our findings are essential for developing alternative photolithography chemicals or informing the implementation of advanced wastewater treatment technologies at fabs.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Electronics , Environmental Monitoring , Fluorocarbons/analysis , Mass Spectrometry , Wastewater , Water Pollutants, Chemical/analysis
20.
Acc Chem Res ; 53(10): 2314-2324, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32930563

ABSTRACT

Organic micropollutants (MPs) are increasing in number and concentration in water systems as a result of human activities. Often from human origin, these micropollutants build up in the environment because organisms lack the mechanisms to metabolize these substances, which cause negative health, ecological, and economic effects. Adsorption-based remediation processes for these compounds often rely on activated carbon materials. However, activated carbons are ineffective against certain MPs, exhibit low removal efficiencies in the presence of common aqueous matrix constituents, and require energy-intensive activation and regeneration processes. To overcome the deficiencies of traditional technologies, novel adsorbents based on molecular receptors offer promising alternative solutions. This Account describes the recent development of polymer adsorbents based on molecular receptors for removing trace organic chemicals from water. Polymer networks based on molecular receptors have high binding affinities for many MPs but, unlike activated carbons, have a specific molecule-binding mechanism that prevents these polymers from being fouled by matrix constituents such as natural organic matter. The size and hydrophobic pocket of the ß-cyclodextrin receptor preferentially adsorbs target molecules such as organic micropollutants in the presence of matrix constituents, and the nature of the cross-linker tunes the binding affinity and selectivity of the adsorbent for specific classes of MPs, including those of varying charge and hydrophobicity. ß-cyclodextrin polymers also exhibit rapid adsorption kinetics and are easily regenerated. This Account details ß-cyclodextrin polymers made with three different cross-linkers, including a polymer that is postsynthetically transformed from a negatively charged polymer to a positively charged polymer to invert the polymer's micropollutant adsorption profile. Morphological constraints have so far limited these cross-linked polymers' ability to be used in commercial applications, but two methods to create larger and more uniformly sized particles for use in flow-through applications are described here. ß-Cyclodextrin polymers are useful for trapping organic micropollutants such as bisphenol A, perfluorooctanoic acid, and many kinds of pharmaceuticals and pesticides, but their binding pockets are too large to capture micropollutants that are small or of high polarity. Other molecular receptors such as resorcinarene cavitands can target lower-molecular-weight MPs, including halomethane disinfection byproducts and industrial solvents, that are not bound strongly by ß-cyclodextrins. These materials demonstrate the potential of expanding the library of polymers based on molecular receptors. Overall, these emerging adsorbents show promise for the removal of legacy and emerging MPs from water, as well as the ability to rationally tune the adsorbent's structure to target the most persistent and toxic MPs.

SELECTION OF CITATIONS
SEARCH DETAIL