Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(1): e1011936, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227586

ABSTRACT

Nuclear egress is an essential process in herpesvirus replication whereby nascent capsids translocate from the nucleus to the cytoplasm. This initial step of nuclear egress-budding at the inner nuclear membrane-is coordinated by the nuclear egress complex (NEC). Composed of the viral proteins UL31 and UL34, NEC deforms the membrane around the capsid as the latter buds into the perinuclear space. NEC oligomerization into a hexagonal membrane-bound lattice is essential for budding because NEC mutants designed to perturb lattice interfaces reduce its budding ability. Previously, we identified an NEC suppressor mutation capable of restoring budding to a mutant with a weakened hexagonal lattice. Using an established in-vitro budding assay and HSV-1 infected cell experiments, we show that the suppressor mutation can restore budding to a broad range of budding-deficient NEC mutants thereby acting as a universal suppressor. Cryogenic electron tomography of the suppressor NEC mutant lattice revealed a hexagonal lattice reminiscent of wild-type NEC lattice instead of an alternative lattice. Further investigation using x-ray crystallography showed that the suppressor mutation promoted the formation of new contacts between the NEC hexamers that, ostensibly, stabilized the hexagonal lattice. This stabilization strategy is powerful enough to override the otherwise deleterious effects of mutations that destabilize the NEC lattice by different mechanisms, resulting in a functional NEC hexagonal lattice and restoration of membrane budding.


Subject(s)
Herpesviridae , Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Suppression, Genetic , Cell Nucleus/metabolism , Nuclear Envelope/metabolism , Herpesviridae/metabolism , Virus Release
2.
mBio ; : e0208723, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874146

ABSTRACT

Membrane fusion mediated by herpes simplex virus 1 (HSV-1) is a complex, multi-protein process that is receptor triggered and can occur both at the cell surface and in endosomes. To deconvolute this complexity, we reconstituted HSV-1 fusion with synthetic lipid vesicles in vitro. Using this simplified, controllable system, we discovered that HSV-1 fusion required not only a cognate host receptor but also low pH. On the target membrane side, efficient fusion required cholesterol, negatively charged lipids found in the endosomal membranes, and an optimal balance of lipid order and disorder. On the virion side, the four HSV-1 entry glycoproteins-gB, gD, gH, and gL-were sufficient for fusion. We propose that low pH is a biologically relevant co-trigger for HSV-1 fusion. The dependence of fusion on low pH and endosomal lipids could explain why HSV-1 enters most cell types by endocytosis. We hypothesize that under neutral pH conditions, other, yet undefined, cellular factors may serve as fusion co-triggers. The in vitro fusion system established here can be employed to systematically investigate HSV-1-mediated membrane fusion.IMPORTANCEHSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.

4.
mBio ; 13(5): e0203922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35972147

ABSTRACT

Herpesviruses-ubiquitous pathogens that cause persistent infections-have some of the most complex cell entry mechanisms. Entry of the prototypical herpes simplex virus 1 (HSV-1) requires coordinated efforts of 4 glycoproteins, gB, gD, gH, and gL. The current model posits that the glycoproteins do not interact before receptor engagement and that binding of gD to its receptor causes a "cascade" of sequential pairwise interactions, first activating the gH/gL complex and subsequently activating gB, the viral fusogen. But how these glycoproteins interact remains unresolved. Here, using a quantitative split-luciferase approach, we show that pairwise HSV-1 glycoprotein complexes form before fusion, interact at a steady level throughout fusion, and do not depend on the presence of the cellular receptor. Based on our findings, we propose a revised "conformational cascade" model of HSV-1 entry. We hypothesize that all 4 glycoproteins assemble into a complex before fusion, with gH/gL positioned between gD and gB. Once gD binds to a cognate receptor, the proximity of the glycoproteins within this complex allows for efficient transmission of the activating signal from the receptor-activated gD to gH/gL to gB through sequential conformational changes, ultimately triggering the fusogenic refolding of gB. Our results also highlight previously unappreciated contributions of the transmembrane and cytoplasmic domains to glycoprotein interactions and fusion. Similar principles could be at play in other multicomponent viral entry systems, and the split-luciferase approach used here is a powerful tool for investigating protein-protein interactions in these and a variety of other systems. IMPORTANCE Herpes simplex virus 1 (HSV-1) infects the majority of humans for life and can cause diseases ranging from painful sores to deadly brain inflammation. No vaccines or curative treatments currently exist. HSV-1 infection of target cells requires coordinated efforts of four viral glycoproteins. But how these glycoproteins interact remains unclear. Using a quantitative protein interaction assay, we found that HSV-1 glycoproteins form receptor-independent complexes and interact at a steady level. We propose that the 4 proteins form a complex, which could facilitate transmission of the entry-triggering signal from the receptor-binding component to the membrane fusogen component through sequential conformational changes. Similar principles could be applicable across other multicomponent protein systems. A revised model of HSV-1 entry could facilitate the development of therapeutics targeting this process.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Membrane Fusion , Viral Envelope Proteins/metabolism , Virus Internalization , Glycoproteins/genetics , Glycoproteins/metabolism
5.
PLoS Pathog ; 18(7): e1010623, 2022 07.
Article in English | MEDLINE | ID: mdl-35802751

ABSTRACT

During replication, herpesviral capsids are translocated from the nucleus into the cytoplasm by an unusual mechanism, termed nuclear egress, that involves capsid budding at the inner nuclear membrane. This process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid. Although the NEC is essential for capsid nuclear egress across all three subfamilies of the Herpesviridae, most studies to date have focused on the NEC homologs from alpha- and beta- but not gammaherpesviruses. Here, we report the crystal structure of the NEC from Epstein-Barr virus (EBV), a prototypical gammaherpesvirus. The structure resembles known structures of NEC homologs yet is conformationally dynamic. We also show that purified, recombinant EBV NEC buds synthetic membranes in vitro and forms membrane-bound coats of unknown geometry. However, unlike other NEC homologs, EBV NEC forms dimers in the crystals instead of hexamers. The dimeric interfaces observed in the EBV NEC crystals are similar to the hexameric interfaces observed in other NEC homologs. Moreover, mutations engineered to disrupt the dimeric interface reduce budding. Putting together these data, we propose that EBV NEC-mediated budding is driven by oligomerization into membrane-bound coats.


Subject(s)
Epstein-Barr Virus Infections , Gammaherpesvirinae , Herpesviridae , Capsid Proteins , Cell Nucleus , Herpesvirus 4, Human , Humans , Nuclear Envelope , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Release
6.
PLoS Pathog ; 18(6): e1010435, 2022 06.
Article in English | MEDLINE | ID: mdl-35767585

ABSTRACT

Membrane fusion during the entry of herpesviruses is carried out by the viral fusogen gB that is activated by its partner protein gH in some manner. The fusogenic activity of gB is controlled by its cytoplasmic (or intraviral) domain (gBCTD) and, according to the current model, the gBCTD is a trimeric, inhibitory clamp that restrains gB in the prefusion conformation. But how the gBCTD clamp is released by gH is unclear. Here, we identified two new regulatory elements within gB and gH from the prototypical herpes simplex virus 1: a surface pocket within the gBCTD and residue V831 within the gH cytoplasmic tail. Mutagenesis and structural modeling suggest that gH V831 interacts with the gB pocket. The gB pocket is located above the interface between adjacent protomers, and we hypothesize that insertion of the gH V831 wedge into the pocket serves to push the protomers apart, which releases the inhibitory clamp. In this manner, gH activates the fusogenic activity of gB. Both gB and gH are conserved across all herpesviruses, and this activation mechanism could be used by other gB homologs. Our proposed mechanism emphasizes a central role for the cytoplasmic regions in regulating the activity of a viral fusogen.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Herpesvirus 1, Human/physiology , Humans , Membrane Fusion/physiology , Protein Subunits/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization
7.
Viruses ; 14(2)2022 01 30.
Article in English | MEDLINE | ID: mdl-35215889

ABSTRACT

Herpesviruses are enveloped, double-stranded DNA viruses that infect a variety of hosts across the animal kingdom. Nine of these establish lifelong infections in humans, for which there are no cures and few vaccine or treatment options. Like all enveloped viruses, herpesviruses enter cells by fusing their lipid envelopes with a host cell membrane. Uniquely, herpesviruses distribute the functions of receptor engagement and membrane fusion across a diverse cast of glycoproteins. Two glycoprotein complexes are conserved throughout the three herpesvirus subfamilies: the trimeric gB that functions as a membrane fusogen and the heterodimeric gH/gL, the role of which is less clearly defined. Here, we highlight the conserved and divergent functions of gH/gL across the three subfamilies of human herpesviruses by comparing its interactions with a broad range of accessory viral proteins, host cell receptors, and neutralizing or inhibitory antibodies. We propose that the intrinsic structural plasticity of gH/gL enables it to function as a signal integration machine that can accept diverse regulatory inputs and convert them into a "trigger" signal that activates the fusogenic ability of gB.


Subject(s)
Herpesviridae/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Herpesviridae/classification , Humans , Protein Binding , Protein Conformation , Receptors, Virus/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Virus Internalization
9.
Viruses ; 13(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34696343

ABSTRACT

Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world's population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.


Subject(s)
Capsid/chemistry , Capsid/metabolism , Herpesviridae/physiology , Herpesviridae/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , Herpesviridae/genetics , Humans , Viral Proteins/chemistry , Viral Proteins/genetics , Virion , Virus Assembly , Virus Replication
10.
mBio ; 12(4): e0154821, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34425706

ABSTRACT

During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.


Subject(s)
Capsid/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Lipid Metabolism , Nuclear Envelope/metabolism , Virus Release , Animals , Cell Nucleus/metabolism , Chlorocebus aethiops , Humans , Nuclear Envelope/virology , Phosphorylation , Static Electricity , Vero Cells , Virus Assembly , Virus Replication
11.
mBio ; 12(2)2021 03 02.
Article in English | MEDLINE | ID: mdl-33653890

ABSTRACT

Herpes simplex viruses (HSV-1 and HSV-2) encode up to 16 envelope proteins, four of which are essential for entry. However, whether these four proteins alone are sufficient to dictate the broad cellular tropism of HSV-1 and the selection of different cell type-dependent entry routes is unknown. To begin addressing this, we previously pseudotyped vesicular stomatitis virus (VSV), lacking its native glycoprotein G, with only the four essential entry glycoproteins of HSV-1: gB, gH, gL, and gD. This novel VSVΔG-BHLD pseudotype recapitulated several important features of HSV-1 entry: the requirement for gB, gH, gL, gD, and a cellular receptor and sensitivity to anti-gB and anti-gH/gL neutralizing antibodies. However, due to the use of a single cell type in that study, the tropism of the VSVΔG-BHLD pseudotype was not investigated. Here, we show that the cellular tropism of the pseudotype is severely limited compared to that of wild-type HSV-1 and that its entry pathways differ from the native HSV-1 entry pathways. To test the hypothesis that other HSV-1 envelope proteins may contribute to HSV-1 tropism, we generated a derivative pseudotype containing the HSV-1 glycoprotein C (VSVΔG-BHLD-gC) and observed a gC-dependent increase in entry efficiency in two cell types. We propose that the pseudotyping platform developed here has the potential to uncover functional contributions of HSV-1 envelope proteins to entry in a gain-of-function manner.IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) contain up to 16 different proteins in their envelopes. Four of these, glycoproteins gB, gD, gH, and gL, are termed essential with regard to entry, whereas the rest are typically referred to as nonessential based on the entry phenotypes of the respective single genetic deletions. However, the single-gene deletion approach, which relies on robust loss-of-function phenotypes, may be confounded by functional redundancies among the many HSV-1 envelope proteins. We have developed a pseudotyping platform in which the essential four entry glycoproteins are isolated from the rest, which can be added back individually for systematic gain-of-function entry experiments. Here, we show the utility of this platform for dissecting the contributions of HSV envelope proteins, both the essential four and the remaining dozen (using gC as an example), to HSV entry.


Subject(s)
Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Molecular Typing/methods , Viral Envelope Proteins/genetics , Viral Tropism , Virus Internalization , Animals , Cell Line , Chlorocebus aethiops , Gain of Function Mutation , HEK293 Cells , HeLa Cells , Herpesvirus 1, Human/chemistry , Humans , Vero Cells , Viral Envelope Proteins/metabolism
12.
Sci Rep ; 11(1): 4206, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603021

ABSTRACT

Herpesviruses infect a majority of the human population, establishing lifelong latent infections for which there is no cure. Periodic viral reactivation spreads infection to new hosts while causing various disease states particularly detrimental in the immunocompromised. Efficient viral replication, and ultimately the spread of infection, is dependent on the nuclear egress complex (NEC), a conserved viral heterodimer that helps translocate viral capsids from the nucleus to the cytoplasm where they mature into infectious virions. Here, we have identified peptides, derived from the capsid protein UL25, that are capable of inhibiting the membrane-budding activity of the NEC from herpes simplex virus type 1 in vitro. We show that the inhibitory ability of the peptides depends on their length and the propensity to form an α-helix but not on the exact amino acid sequence. Current therapeutics that target viral DNA replication machinery are rendered ineffective by drug resistance due to viral mutations. Our results establish a basis for the development of an alternative class of inhibitors against nuclear egress, an essential step in herpesvirus replication, potentially expanding the current repertoire of available therapeutics.


Subject(s)
Cell Nucleus/genetics , Herpesvirus 1, Human/genetics , Nuclear Proteins/genetics , Peptides/genetics , Viral Proteins/genetics , Amino Acid Sequence , Capsid Proteins/genetics , Cytoplasm/genetics , DNA Replication/genetics , DNA, Viral/genetics , Mutation/genetics , Nuclear Envelope/genetics , Protein Conformation, alpha-Helical/genetics , Virus Replication/genetics
13.
Curr Issues Mol Biol ; 41: 125-170, 2021.
Article in English | MEDLINE | ID: mdl-32764158

ABSTRACT

During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.


Subject(s)
Cell Nucleus/metabolism , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Herpesviridae/metabolism , Nuclear Envelope/metabolism , Capsid/metabolism , Cell Nucleus/virology , Cytoplasm/metabolism , Cytoplasm/virology , Humans , Viral Proteins/metabolism , Virion/metabolism
14.
Elife ; 92020 06 24.
Article in English | MEDLINE | ID: mdl-32579107

ABSTRACT

During herpesvirus infection, egress of nascent viral capsids from the nucleus is mediated by the viral nuclear egress complex (NEC). NEC deforms the inner nuclear membrane (INM) around the capsid by forming a hexagonal array. However, how the NEC coat interacts with the capsid and how curved coats are generated to enable budding is yet unclear. Here, by structure-guided truncations, confocal microscopy, and cryoelectron tomography, we show that binding of the capsid protein UL25 promotes the formation of NEC pentagons rather than hexagons. We hypothesize that during nuclear budding, binding of UL25 situated at the pentagonal capsid vertices to the NEC at the INM promotes formation of NEC pentagons that would anchor the NEC coat to the capsid. Incorporation of NEC pentagons at the points of contact with the vertices would also promote assembly of the curved hexagonal NEC coat around the capsid, leading to productive egress of UL25-decorated capsids.


Subject(s)
Capsid Proteins/metabolism , Gene Expression Regulation, Viral/physiology , Herpesvirus 1, Human/metabolism , Active Transport, Cell Nucleus , Capsid Proteins/genetics , Cloning, Molecular , Cryoelectron Microscopy , Escherichia coli , Herpesvirus 1, Human/genetics , Microscopy, Confocal , Protein Transport , Virus Replication
15.
mBio ; 11(3)2020 05 05.
Article in English | MEDLINE | ID: mdl-32371601

ABSTRACT

A distinguishing morphological feature of all herpesviruses is the multiprotein tegument layer located between the nucleocapsid and lipid envelope of the virion. Tegument proteins play multiple roles in viral replication, including viral assembly, but we do not yet understand their individual functions or how the tegument is assembled and organized. UL11, the smallest tegument protein, is important for several distinct processes in replication, including efficient virion morphogenesis and cell-cell spread. However, the mechanistic understanding of its role in these and other processes is limited in part by the scant knowledge of its biochemical and structural properties. Here, we report that UL11 from herpes simplex virus 1 (HSV-1) is an intrinsically disordered, conformationally dynamic protein that undergoes liquid-liquid phase separation (LLPS) in vitro Intrinsic disorder may underlie the ability of UL11 to exert multiple functions and bind multiple partners. Sequence analysis suggests that not only all UL11 homologs but also all HSV-1 tegument proteins contain intrinsically disordered regions of different lengths. The presence of intrinsic disorder, and potentially, the ability to form LLPS, may thus be a common feature of the tegument proteins. We hypothesize that tegument assembly may involve the formation of a biomolecular condensate, driven by the heterogeneous mixture of intrinsically disordered tegument proteins.IMPORTANCE Herpesvirus virions contain a unique tegument layer sandwiched between the capsid and lipid envelope and composed of multiple copies of about two dozen viral proteins. However, little is known about the structure of the tegument or how it is assembled. Here, we show that a conserved tegument protein UL11 from herpes simplex virus 1, a prototypical alphaherpesvirus, is an intrinsically disordered protein that undergoes liquid-liquid phase separation in vitro Through sequence analysis, we find intrinsically disordered regions of different lengths in all HSV-1 tegument proteins. We hypothesize that intrinsic disorder is a common characteristic of tegument proteins and propose a new model of tegument as a biomolecular condensate.


Subject(s)
Herpesvirus 1, Human/chemistry , RNA-Binding Proteins/chemistry , Viral Structural Proteins/chemistry , Crystallography , Herpesvirus 1, Human/genetics , Protein Binding , RNA-Binding Proteins/genetics , Viral Structural Proteins/genetics
16.
Bio Protoc ; 10(12): e3662, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-33659332

ABSTRACT

Structural and biochemical studies of proteins require high amounts of stable, purified proteins. Protein stability often depends on the buffer composition, which includes pH and concentration of salts or other solutes such as glycerol, hence an efficient method for identifying optimal buffer conditions for stability would minimize time and resources used for protein purification and further studies. This protocol describes the use of the Thermofluor assay, in combination with a custom 24-condition screen, to identify buffer conditions that increase protein thermostability, using the conserved herpesviral protein UL37 as an example. Detailed instructions on screen conditions, running the Thermofluor MATLAB script, and analyzing the data are provided. In comparison to circular dichroism (CD), the buffer screen in combination with Thermofluor assay provides a faster and more informative method to analyze protein thermostability.

17.
Methods Mol Biol ; 2060: 377-393, 2020.
Article in English | MEDLINE | ID: mdl-31617192

ABSTRACT

Herpes simplex viruses utilize glycoproteins displayed on the viral envelope to perform a variety of functions in the viral infectious cycle. Structural and functional studies of these viral glycoproteins can benefit from biochemical, biophysical, and structural analysis of purified proteins. Here, we describe a general protocol for expression and purification of viral glycoproteins from insect cells based on those developed for the HSV-1 gB and HSV-2 gH/gL ectodomains as well as the protocol for crystallization of these glycoproteins. This protocol can be used for generating milligram amounts of wild-type (WT) or mutant gB and gH/gL ectodomains or can be adapted to produce purified ectodomains of glycoproteins from HSV or other herpesviruses for biochemical and structural studies.


Subject(s)
Gene Expression , Glycoproteins , Herpesvirus 1, Human , Viral Envelope Proteins , Animals , Crystallography, X-Ray , Glycoproteins/biosynthesis , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/isolation & purification , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sf9 Cells , Spodoptera , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purification
18.
Methods Mol Biol ; 2060: 395-407, 2020.
Article in English | MEDLINE | ID: mdl-31617193

ABSTRACT

HSV glycoproteins play important roles in the viral life cycle, particularly viral cell entry. Here we describe the protocol for expression, purification, and crystallization of full-length HSV-1 glycoprotein B. The protocol provides a framework for incorporating transmembrane domain-stabilizing amphipols into the crystallization setup and can be adapted to isolate other complete HSV glycoproteins.


Subject(s)
Gene Expression , Herpesvirus 1, Human , Viral Envelope Proteins , Animals , Crystallography, X-Ray , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sf9 Cells , Spodoptera , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purification
20.
J Biol Chem ; 293(41): 15827-15839, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30166339

ABSTRACT

In all herpesviruses, the space between the capsid shell and the lipid envelope is occupied by the unique tegument layer composed of proteins that, in addition to structural roles, play many other roles in the viral replication. UL37 is a highly conserved tegument protein that has activities ranging from virion morphogenesis to directional capsid trafficking to manipulation of the host innate immune response and binds multiple partners. The N-terminal half of UL37 (UL37N) has a compact bean-shaped α-helical structure that contains a surface region essential for neuroinvasion. However, no biochemical or structural information is currently available for the C-terminal half of UL37 (UL37C) that mediates most of its interactions with multiple binding partners. Here, we show that the C-terminal half of UL37 from pseudorabies virus UL37C is a conformationally flexible monomer composed of an elongated folded core and an unstructured C-terminal tail. This elongated structure, along with that of its binding partner UL36, explains the nature of filamentous tegument structures bridging the capsid and the envelope. We propose that the dynamic nature of UL37 underlies its ability to perform diverse roles during viral replication.


Subject(s)
Viral Structural Proteins/chemistry , Herpesvirus 1, Suid/chemistry , Models, Molecular , Protein Conformation, alpha-Helical , Protein Domains , Scattering, Small Angle , Transition Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...