Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(42): 28072-28083, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34723007

ABSTRACT

Knowledge of crystal nucleation and growth is paramount in understanding the geometry evolution of porous medium during reactive transport processes in geo-environmental studies. To predict transport properties precisely, it is necessary to delineate both the amount and location of nucleation and precipitation events in the spatiotemporal domain. This study investigates the precipitation of calcium carbonate crystals on a heterogeneous sandstone substrate as a function of chemical supersaturation, temperature, and time. The main objective was to evaluate solid formation under different boundary conditions when the solid-liquid interface plays a key role. New observations were made on the effect of primary and secondary substrates and the role of preferential precipitation locations on the rock surfaces. The results indicate that supersaturation and temperature determine the amount, distribution pattern, and growth rate of crystals. Substrate characteristics governed the nucleation, growth location, and evolution probability across time and space. Moreover, substrate surface properties introduced preferential sites that were occupied and covered with solids first. Our results highlight the complex dynamics induced by substrate surface properties on the spatial and temporal solute distribution, transport, and deposition. We accentuate the great potentials of the probabilistic nucleation model to describe mineral formation in a porous medium during reactive transport.

2.
Sci Rep ; 11(1): 16397, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34385483

ABSTRACT

One important unresolved question in reactive transport is how pore-scale processes can be upscaled and how predictions can be made on the mutual effect of chemical processes and fluid flow in the porous medium. It is paramount to predict the location of mineral precipitation besides their amount for understanding the fate of transport properties. However, current models and simulation approaches fail to predict precisely where crystals will nucleate and grow in the spatiotemporal domain. We present a new mathematical model for probabilistic mineral nucleation and precipitation. A Lattice Boltzmann implementation of the two-dimensional mineral surface was developed to evaluate geometry evolution when probabilistic nucleation criterion is incorporated. To provide high-resolution surface information on mineral precipitation, growth, and distribution, we conducted a total of 27 calcium carbonate synthesis experiments in the laboratory. The results indicate that nucleation events as precursors determine the location and timing of crystal precipitation. It is shown that reaction rate has primary control over covering the substrate with nuclei and, subsequently, solid-phase accumulation. The work provides insight into the spatiotemporal evolution of porous media by suggesting probabilistic and deterministic domains for studying reactive transport processes. We indicate in which length- and time-scales it is essential to incorporate probabilistic nucleation for valid predictions.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117360, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31319272

ABSTRACT

We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload. In order to extrapolate valuable indicators of the mineralogical data that could derive from the ExoMars/Raman Laser Spectrometer (RLS), laboratory results were then compared with the molecular data gathered through the RLS ExoMars Simulator. Beside correctly identifying all major phases (feldspar, pyroxene and olivine), the RLS ExoMars Simulator confirmed the presence of additional minor compounds (i.e. hematite and apatite) that were not detected by complementary techniques. Furthermore, concerning the in-depth study of olivine grains, the RLS ExoMars simulator was able to effectively detect the shifting of the characteristic double peak around 820 and 850 cm-1, from which the FeMg content of the analyzed crystals can be extrapolated. Considering that olivine is one of the main mineral phases of the ExoMars landing site (Oxia Planum), this study suggests that the ExoMars/RLS system has the potential to provide detailed information about the elemental composition of olivine on Mars.

4.
Environ Sci Technol ; 53(8): 4630-4639, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30945855

ABSTRACT

Fractures in caprocks overlying CO2 storage reservoirs can adversely affect the sealing capacity of the rocks. Interactions between acidified fluid and minerals with different reactivities along a fracture pathway can affect the chemically induced changes in hydrodynamic properties of fractures. To study porosity and permeability evolution of small-scale (millimeter scale) fractures, a three-dimensional pore-scale reactive transport model based on the lattice Boltzmann method has been developed. The model simulates the evolution of two different fractured carbonate-rich caprock samples subjected to a flow of CO2-rich brine. The results show that the existence of nonreactive minerals along the flow path can restrict the increase in permeability and the cubic law used to relate porosity and permeability in monomineral fractured systems is therefore not valid in multimineral systems. Moreover, the injection of CO2-acidified brine at high rates resulted in a more permeable fractured media in comparison to the case with lower injection rates. The overall rate of calcite dissolution along the fracture decreased over time, confirming similar observations from previous continuum scale models. The presented 3D pore-scale model can be used to provide inputs for continuum scale models, such as improved porosity-permeability relationships for heterogeneous rocks, and also to investigate other reactive transport processes in the context of CO2 leakage in fractured seals.


Subject(s)
Carbon Dioxide , Salts , Carbonates , Porosity
5.
Environ Sci Technol ; 52(10): 6050-6060, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29683654

ABSTRACT

Fracture networks inside the caprock for CO2 storage reservoirs may serve as leakage pathways. Fluid flow through fractured caprocks and bypass conduits, however, can be restrained or diminished by mineral precipitations. This study investigates precipitation of salt crystals in an artificial fracture network as a function of pressure-temperature conditions and CO2 phase states. The impact of CO2 flow rate on salt precipitation was also studied. The primary research objective was to examine whether salt precipitation can block potential CO2 leakage pathways. In this study, we developed a novel microfluidic high-pressure high-temperature vessel to house geomaterial micromodels. A fracture network was laser-scribed on the organic-rich shales of the Draupne Formation, the primary caprock for the Smeaheia CO2 storage in Norway. Experimental observations demonstrated that CO2 phase states influence the magnitude, distribution, and precipitation patterns of salt accumulations. The CO2 phase states also affect the relationship between injection rate and extent of precipitated salts due to differences in solubility of water in CO2 and density of different CO2 phases. Injection of gaseous CO2 resulted in higher salt precipitation compared to liquid and supercritical CO2. It is shown that micrometer-sized halite crystals have the potential to partially or entirely clog fracture apertures.


Subject(s)
Carbon Dioxide , Microfluidics , Minerals , Norway , Sodium Chloride
6.
Sci Rep ; 5: 17352, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26611741

ABSTRACT

Land-use changes until the beginning of the 20(th) century made the terrestrial biosphere a net source of atmospheric carbon. Later, burning of fossil fuel surpassed land use changes as the major anthropogenic source of carbon. The terrestrial biosphere is at present suggested to be a carbon sink, but the distribution of excess anthropogenic carbon to the ocean and biosphere sinks is highly uncertain. Our modeling suggest that land-use changes can be tracked quite well by the carbon isotopes until mid-20(th) century, whereas burning of fossil fuel dominates the present-day observed changes in the isotope signature. The modeling indicates that the global carbon isotope fractionation has not changed significantly during the last 150 years. Furthermore, increased uptake of carbon by the ocean and increasing temperatures does not yet appear to have resulted in increasing the global gross ocean-to-atmosphere carbon fluxes. This may however change in the future when the excess carbon will emerge in the ocean upwelling zones, possibly reducing the net-uptake of carbon compared to the present-day ocean.

7.
Geochem Trans ; 13(1): 5, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22697910

ABSTRACT

Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources.Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar.Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 - 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.

8.
Astrobiology ; 11(7): 711-24, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21923409

ABSTRACT

The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged.


Subject(s)
Cold Temperature , Hydrogen/chemistry , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Ecosystem , Oxidation-Reduction , Water/chemistry
9.
Environ Sci Technol ; 39(21): 8281-7, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16294864

ABSTRACT

Thermodynamic calculations indicate that although dawsonite (NaAlCO3(OH)2) is favored to form at the high CO2 pressures associated with carbon dioxide injection into sandstone reservoirs, this mineral will become unstable as CO2 pressure decreases following injection. To assess the degree to which dawsonite will persist following its formation in sandstone reservoirs, its dissolution rates have been measured at 80 +/- 3 degrees C as a function of pH from 3 to 10. Measured dawsonite dissolution rates normalized to their BET surface area are found to be nearly independent of pH over the range of 3.5 < pH < 8.6 at 1.58 x 10(-9) mol/(m2 x s). Use of these dissolution rates in reactive transport calculations indicate that dawsonite rapidly dissolves following the decrease of CO2 pressure out of its stability field, leading mainly to the precipitation of secondary kaolinite. This result indicates that dawsonite will provide a permanent mineral storage host only in systems that maintain high CO2 pressures, whereas dawsonite may be an ephemeral phase in dynamic settings and dissolve once high CO2 pressure dissipates either through dispersion or leakage.


Subject(s)
Aluminum Hydroxide/chemistry , Carbon Dioxide/chemistry , Kinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...