Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
NMR Biomed ; 37(1): e5034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37681398

ABSTRACT

Functional magnetic resonance imaging (fMRI) in awake small animals such as pigeons or songbirds opens a new window into the neural fundaments of cognitive behavior. However, high-field fMRI in the avian brain is challenging due to strong local magnetic field inhomogeneities caused by air cavities in the skull. A spoiled gradient-echo fMRI sequence has already been used to map the auditory network in songbirds, but due to susceptibility artifacts only 50% of the whole brain could be recorded. Since whole-brain fMRI coverage is vital to reveal whole-brain networks, an MRI sequence that is less susceptible to these artifacts was required. This was recently achieved in various bird species by using a rapid acquisition with relaxation enhancement (RARE) sequence. Weak blood oxygen level-dependent (BOLD) sensitivity, low temporal resolution, and heat caused by the long train of RF refocusing pulses are the main limits of RARE fMRI at high magnetic fields. To go beyond some of these limitations, we here describe the implementation of a two-segmented spin-echo echo-planar imaging (SE-EPI). The proposed sequence covers the whole brain of awake pigeons. The sequence was applied to investigate the auditory network in awake pigeons and assessed the relative merits of this method in comparison with the single-shot RARE sequence. At the same imaging resolution but with a volume acquisition of 3 s versus 4 s for RARE, the two-segmented SE-EPI provided twice the strength of BOLD activity compared with the single-shot RARE sequence, while the image signal-to-noise ratio (SNR) and in particular the temporal SNR were very similar for the two sequences. In addition, the activation patterns in two-segmented SE-EPI data are more symmetric and larger than single-shot RARE results. Two-segmented SE-EPI represents a valid alternative to the RARE sequence in avian fMRI research since it yields more than twice the BOLD sensitivity per unit of time with much less energy deposition and better temporal resolution, particularly for event-related experiments.


Subject(s)
Columbidae , Echo-Planar Imaging , Animals , Echo-Planar Imaging/methods , Wakefulness , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology
2.
Sci Rep ; 13(1): 22822, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38129558

ABSTRACT

Quantitative muscle MRI is increasingly important in the non-invasive evaluation of neuromuscular disorders and their progression. Underlying histopathotological alterations, leading to changes in qMRI parameters are incompletely unraveled. Early microstructural differences of unknown origin reflected by Diffusion MRI in non-fat infiltrated muscles were detected in Pompe patients. This study employed a longitudinal approach with a Pompe disease mouse model to investigate the histopathological basis of these changes. Monthly scans of Pompe (Gaa6neo/6neo) and wildtype mice (age 1-8 months) were conducted using diffusion MRI, T2-mapping, and Dixon-based water-fat imaging on a 7 T scanner. Immunofluorescence studies on quadriceps muscles were analyzed for lysosomal accumulations and autophagic buildup and correlated with MRI outcome measures. Fat fraction and water-T2 did not differ between groups and remained stable over time. In Pompe mice, fractional anisotropy increased, while mean diffusivity (MD) and radial diffusivity (RD) decreased in all observed muscles. Autophagic marker and muscle fibre diameter revealed significant negative correlations with reduced RD and MD, while lysosomal marker did not show any change or correlation. Using qMRI, we showed diffusion changes in muscles of presymptomatic Pompe mice without fat-infiltrated muscles and correlated them to autophagic markers and fibre diameter, indicating diffusion MRI reveals autophagic buildup.


Subject(s)
Glycogen Storage Disease Type II , Humans , Mice , Animals , Infant , Glycogen Storage Disease Type II/diagnostic imaging , Glycogen Storage Disease Type II/pathology , Muscle Fibers, Skeletal/pathology , Diffusion Magnetic Resonance Imaging , Quadriceps Muscle , Disease Models, Animal , Water
3.
Nat Commun ; 14(1): 3259, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277328

ABSTRACT

Mammalian sleep has been implicated in maintaining a healthy extracellular environment in the brain. During wakefulness, neuronal activity leads to the accumulation of toxic proteins, which the glymphatic system is thought to clear by flushing cerebral spinal fluid (CSF) through the brain. In mice, this process occurs during non-rapid eye movement (NREM) sleep. In humans, ventricular CSF flow has also been shown to increase during NREM sleep, as visualized using functional magnetic resonance imaging (fMRI). The link between sleep and CSF flow has not been studied in birds before. Using fMRI of naturally sleeping pigeons, we show that REM sleep, a paradoxical state with wake-like brain activity, is accompanied by the activation of brain regions involved in processing visual information, including optic flow during flight. We further demonstrate that ventricular CSF flow increases during NREM sleep, relative to wakefulness, but drops sharply during REM sleep. Consequently, functions linked to brain activation during REM sleep might come at the expense of waste clearance during NREM sleep.


Subject(s)
Brain , Sleep, REM , Humans , Mice , Animals , Sleep, REM/physiology , Brain/diagnostic imaging , Brain/physiology , Sleep/physiology , Wakefulness/physiology , Columbidae , Electroencephalography , Mammals
4.
Front Neurosci ; 15: 805679, 2021.
Article in English | MEDLINE | ID: mdl-34992520

ABSTRACT

Functional magnetic resonance imaging, as a non-invasive technique, offers unique opportunities to assess brain function and connectivity under a broad range of applications, ranging from passive sensory stimulation to high-level cognitive abilities, in awake animals. This approach is confounded, however, by the fact that physical restraint and loud unpredictable acoustic noise must inevitably accompany fMRI recordings. These factors induce marked stress in rodents, and stress-related elevations of corticosterone levels are known to alter information processing and cognition in the rodent. Here, we propose a habituation strategy that spans specific stages of adaptation to restraint, MRI noise, and confinement stress in awake rats and circumvents the need for surgical head restraint. This habituation protocol results in stress levels during awake fMRI that do not differ from pre-handling levels and enables stable image acquisition with very low motion artifacts. For this, rats were gradually trained over a period of three weeks and eighteen training sessions. Stress levels were assessed by analysis of fecal corticosterone metabolite levels and breathing rates. We observed significant drops in stress levels to below pre-handling levels at the end of the habituation procedure. During fMRI in awake rats, after the conclusion of habituation and using a non-invasive head-fixation device, breathing was stable and head motion artifacts were minimal. A task-based fMRI experiment, using acoustic stimulation, conducted 2 days after the end of habituation, resulted in precise whole brain mapping of BOLD signals in the brain, with clear delineation of the expected auditory-related structures. The active discrimination by the animals of the acoustic stimuli from the backdrop of scanner noise was corroborated by significant increases in BOLD signals in the thalamus and reticular formation. Taken together, these data show that effective habituation to awake fMRI can be achieved by gradual and incremental acclimatization to the experimental conditions. Subsequent BOLD recordings, even during superimposed acoustic stimulation, reflect low stress-levels, low motion and a corresponding high-quality image acquisition. Furthermore, BOLD signals obtained during fMRI indicate that effective habituation facilitates selective attention to sensory stimuli that can in turn support the discrimination of cognitive processes in the absence of stress confounds.

5.
Nat Commun ; 11(1): 4715, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948772

ABSTRACT

Animal-fMRI is a powerful method to understand neural mechanisms of cognition, but it remains a major challenge to scan actively participating small animals under low-stress conditions. Here, we present an event-related functional MRI platform in awake pigeons using single-shot RARE fMRI to investigate the neural fundaments for visually-guided decision making. We established a head-fixated Go/NoGo paradigm, which the animals quickly learned under low-stress conditions. The animals were motivated by water reward and behavior was assessed by logging mandibulations during the fMRI experiment with close to zero motion artifacts over hundreds of repeats. To achieve optimal results, we characterized the species-specific hemodynamic response function. As a proof-of-principle, we run a color discrimination task and discovered differential neural networks for Go-, NoGo-, and response execution-phases. Our findings open the door to visualize the neural fundaments of perceptual and cognitive functions in birds-a vertebrate class of which some clades are cognitively on par with primates.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/veterinary , Wakefulness , Animals , Artifacts , Behavior, Animal/physiology , Brain Mapping , Columbidae , Humans , Inhibition, Psychological , Learning , Motion , Neural Networks, Computer , Reward
6.
Glia ; 68(12): 2517-2549, 2020 12.
Article in English | MEDLINE | ID: mdl-32579270

ABSTRACT

The Alzheimer disease-associated multifunctional low-density lipoprotein receptor-related protein-1 is expressed in the brain. Recent studies uncovered a role of this receptor for the appropriate functioning of neural stem cells, oligodendrocytes, and neurons. The constitutive knock-out (KO) of the receptor is embryonically lethal. To unravel the receptors' role in the developing brain we generated a mouse mutant by specifically targeting radial glia stem cells of the dorsal telencephalon. The low-density lipoprotein receptor-related protein-1 lineage-restricted KO female and male mice, in contrast to available models, developed a severe neurological phenotype with generalized seizures during early postnatal development. The mechanism leading to a buildup of hyperexcitability and emergence of seizures was traced to a failure in adequate astrocyte development and deteriorated postsynaptic density integrity. The detected impairments in the astrocytic lineage: precocious maturation, reactive gliosis, abolished tissue plasminogen activator uptake, and loss of functionality emphasize the importance of this glial cell type for synaptic signaling in the developing brain. Together, the obtained results highlight the relevance of astrocytic low-density lipoprotein receptor-related protein-1 for glutamatergic signaling in the context of neuron-glia interactions and stage this receptor as a contributing factor for epilepsy.


Subject(s)
Ependymoglial Cells , Animals , Astrocytes , Female , Lipoproteins, LDL , Male , Mice , Prosencephalon , Receptors, Lipoprotein , Seizures , Tissue Plasminogen Activator
7.
Brain Struct Funct ; 225(2): 683-703, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32009190

ABSTRACT

The phylogenetic position of crocodilians in relation to birds and mammals makes them an interesting animal model for investigating the evolution of the nervous system in amniote vertebrates. A few neuroanatomical atlases are available for reptiles, but with a growing interest in these animals within the comparative neurosciences, a need for these anatomical reference templates is becoming apparent. With the advent of MRI being used more frequently in comparative neuroscience, the aim of this study was to create a three-dimensional MRI-based atlas of the Nile crocodile (Crocodylus niloticus) brain to provide a common reference template for the interpretation of the crocodilian, and more broadly reptilian, brain. Ex vivo MRI acquisitions in combination with histological data were used to delineate crocodilian brain areas at telencephalic, diencephalic, mesencephalic, and rhombencephalic levels. A total of 50 anatomical structures were successfully identified and outlined to create a 3-D model of the Nile crocodile brain. The majority of structures were more readily discerned within the forebrain of the crocodile with the methods used to produce this atlas. The anatomy outlined herein corresponds with both classical and recent crocodilian anatomical analyses, barring a few areas of contention predominantly related to a lack of functional data and conflicting nomenclature.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Anatomy, Artistic , Atlases as Topic , Prosencephalon/anatomy & histology , Animals , Magnetic Resonance Imaging , Phylogeny , Prosencephalon/diagnostic imaging
8.
Cells Tissues Organs ; 207(1): 1-14, 2019.
Article in English | MEDLINE | ID: mdl-31189166

ABSTRACT

The number of human embryology collections is very limited worldwide. Some of these comprise the Carnegie Collection, Kyoto Collection, and the Blechschmidt Collection. One further embryonic collection is the Hinrichsen Collection of the Ruhr University Bochum, Germany, which also contains very well-preserved embryos/fetuses, along with approximately 16,000 histological sections. The digitization of this collection is indispensable to enable conservation of the collection for the future and to provide a large group of embryologists, researchers, and physicians access to these histological slides. A small selection of these scans is available at the website of the Digital Embryology Consortium [https://-human-embryology.org/wiki/Main_Page].


Subject(s)
Embryo, Mammalian/pathology , Fetus/diagnostic imaging , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Embryo, Mammalian/abnormalities , Female , Fetus/abnormalities , Humans , Infant, Newborn , Male
9.
Radiology ; 290(2): 359-367, 2019 02.
Article in English | MEDLINE | ID: mdl-30615566

ABSTRACT

Purpose To investigate the association of inflammation and brain edema in a cerebral malaria (CM) mouse model with a combination of bis-5-hydroxy-tryptamide-diethylenetriaminepentaacetate gadolinium, referred to as MPO-Gd, and cross-linked iron oxide nanoparticle (CLIO-NP) imaging. Materials and Methods Female wild-type (n = 23) and myeloperoxidase (MPO) knock-out (n = 5) mice were infected with the Plasmodium berghei ANKA strain from May 2016 to July 2018. Seven healthy mice served as control animals. At a Rapid Murine Coma and Behavioral Scale (RMCBS) score of less than 15, mice underwent MRI at 9.4 T and received gadodiamide, MPO-Gd, or CLIO-NPs. T1-weighted MRI was used to assess MPO activity, and T2*-weighted MRI was used to track CLIO-NPs. Immunofluorescent staining and flow cytometric analyses characterized CLIO-NPs, MPO, endothelial cells, and leukocytes. An unpaired, two-tailed Student t test was used to compare groups; Spearman correlation analysis was used to determine the relationship of imaging parameters to clinical severity. Results MPO-Gd enhancement occurred in inflammatory CM hotspots (olfactory bulb > rostral migratory stream > brainstem > cortex, P < .05 for all regions compared with control mice; mean olfactory bulb signal intensity ratio: 1.40 ± 0.07 vs 0.96 ± 0.01, P < .01). The enhancement was reduced in MPO knockout mice (mean signal intensity ratio at 60 minutes: 1.13 ± 0.04 vs 1.40 ± 0.07 in CM, P < .05). Blood-brain barrier compromise was suggested by parenchymal gadolinium enhancement, leukocyte recruitment, and endothelial activation. CLIO-NPs accumulated mainly intravascularly and at the vascular endothelium. CLIO-NPs were also found in the choroid plexus, indicating inflammation of the ventricular system. Blood-cerebrospinal fluid barrier breakdown showed correlation with brain swelling (r2: 0.55, P < .01) and RMCBS score (r2: 0.75, P < .001). Conclusion Iron oxide nanoparticle imaging showed strong inflammatory involvement of the microvasculature in a murine model of cerebral malaria. Furthermore, bis-5-hydroxy-tryptamide-diethylenetriaminepentaacetate gadolinium imaging depicted parenchymal and intraventricular inflammation. This combined molecular imaging approach links vascular inflammation to breakdown of the blood-brain barrier and blood-cerebrospinal fluid barrier that correlate with global brain edema and disease severity. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Kiessling in this issue.


Subject(s)
Brain Edema , Encephalitis , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Malaria, Cerebral , Peroxidase/metabolism , Animals , Brain/diagnostic imaging , Brain/enzymology , Brain/pathology , Brain Edema/diagnostic imaging , Brain Edema/enzymology , Brain Edema/parasitology , Brain Edema/pathology , Disease Models, Animal , Encephalitis/diagnostic imaging , Encephalitis/enzymology , Encephalitis/parasitology , Encephalitis/pathology , Female , Malaria, Cerebral/complications , Malaria, Cerebral/diagnostic imaging , Malaria, Cerebral/enzymology , Malaria, Cerebral/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Stroke ; 49(6): 1479-1487, 2018 06.
Article in English | MEDLINE | ID: mdl-29760276

ABSTRACT

BACKGROUND AND PURPOSE: Detection and localization of the early phase of blood-brain barrier disruption (BBBD) in vivo during cerebral ischemia/reperfusion injury remain a major challenge but may be a relevant outcome parameter in stroke. METHODS: We studied early BBBD in mice after transient middle cerebral artery occlusion by multimodal, high-field (9.4T) in vivo magnetic resonance imaging, including the contrast agent gadofluorineM as an albumin-binding tracer. GadofluorineM contrast-enhanced magnetic resonance imaging was performed to determine BBBD at 2, 6, and 24 hours after reperfusion. BBBD was confirmed and localized along the microvascular tree by using fluorescent gadofluorineM and immunofluorescence stainings (cluster of differentiation 31, ephrin type-B receptor 4, alpha smooth muscle actin, ionized calcium binding adaptor molecule 1). RESULTS: GadofluorineM contrast-enhanced magnetic resonance imaging revealed a multifocal spatial distribution of early BBBD and its close association with the microvasculature at a resolution of 40 µm. GadofluorineM leakage was closely associated with ephrin type-B receptor 4-positive but not alpha smooth muscle actin-positive vessels. The multifocal pattern of early BBBD (already at 2 hours after reperfusion) thus occurred in the distal capillary and venular microvascular bed. These multifocal zones showed distinct imaging signs indicative of early vasogenic edema. The total volume of multifocal early BBBD accurately predicted infarct size at 24 hours after reperfusion. CONCLUSIONS: Early BBBD in focal cerebral ischemia initiates multifocally in the distal capillary and venular bed of the cerebral microvasculature. It is closely associated with perimicrovascular vasogenic edema and microglial activation and predicts the extent of final infarction.


Subject(s)
Blood-Brain Barrier/pathology , Brain Ischemia/pathology , Capillaries/pathology , Stroke/pathology , Animals , Blood-Brain Barrier/metabolism , Brain/blood supply , Brain/pathology , Brain Edema/pathology , Cerebrovascular Circulation/physiology , Infarction, Middle Cerebral Artery/pathology , Magnetic Resonance Imaging/methods , Male , Mice, Inbred C57BL , Reperfusion Injury/pathology
11.
Proc Biol Sci ; 285(1877)2018 04 25.
Article in English | MEDLINE | ID: mdl-29695446

ABSTRACT

Crocodilians are important for understanding the evolutionary history of amniote neural systems as they are the nearest extant relatives of modern birds and share a stem amniote ancestor with mammals. Although the crocodilian brain has been investigated anatomically, functional studies are rare. Here, we employed functional magnetic resonance imaging (fMRI), never tested in poikilotherms, to investigate crocodilian telencephalic sensory processing. Juvenile Crocodylus niloticus were placed in a 7 T MRI scanner to record blood oxygenation level-dependent (BOLD) signal changes during the presentation of visual and auditory stimuli. Visual stimulation increased BOLD signals in rostral to mid-caudal portions of the dorso-lateral anterior dorsal ventricular ridge (ADVR). Simple auditory stimuli led to signal increase in the rostromedial and caudocentral ADVR. These activation patterns are in line with previously described projection fields of diencephalic sensory fibres. Furthermore, complex auditory stimuli activated additional regions of the caudomedial ADVR. The recruitment of these additional, presumably higher-order, sensory areas reflects observations made in birds and mammals. Our results indicate that structural and functional aspects of sensory processing have been likely conserved during the evolution of sauropsids. In addition, our study shows that fMRI can be used to investigate neural processing in poikilotherms, providing a new avenue for neurobiological research in these critical species.


Subject(s)
Alligators and Crocodiles/physiology , Auditory Perception , Biological Evolution , Magnetic Resonance Imaging/methods , Telencephalon/physiology , Visual Perception , Animals , Magnetic Resonance Imaging/standards , Neurobiology
12.
Magn Reson Med ; 79(2): 1090-1100, 2018 02.
Article in English | MEDLINE | ID: mdl-28474481

ABSTRACT

PURPOSE: Establishment of regional longitudinal (T1 ) and transverse (T2 ) relaxation times in awake pigeons and rats at 7T field strength. Regional differences in relaxation times between species and between two different pigeon breeds (homing pigeons and Figurita pigeons) were investigated. METHODS: T1 and T2 relaxation times were determined for nine functionally equivalent brain regions in awake pigeons and rats using a multiple spin-echo saturation recovery method with variable repetition time and a multi-slice/multi-echo sequence, respectively. Optimized head fixation and habituation protocols were applied to accustom animals to the scanning conditions and to minimize movement. RESULTS: The habituation protocol successfully limited movement of the awake animals to a negligible minimum, allowing reliable measurement of T1 and T2 values within all regions of interest. Significant differences in relaxation times were found between rats and pigeons but not between different pigeon breeds. CONCLUSION: The obtained T1 and T2 values for awake pigeons and rats and the optimized habituation protocol will augment future MRI studies with awake animals. The differences in relaxation times observed between species underline the importance of the acquisition of T1 /T2 values as reference points for specific experiments. Magn Reson Med 79:1090-1100, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Wakefulness/physiology , Animals , Columbidae/physiology , Equipment Design , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/veterinary , Male , Rats , Rats, Long-Evans
13.
Brain Behav Evol ; 90(1): 62-72, 2017.
Article in English | MEDLINE | ID: mdl-28866684

ABSTRACT

In the last two decades, the avian hippocampus has been repeatedly studied with respect to its architecture, neurochemistry, and connectivity pattern. We review these insights and conclude that we unfortunately still lack proper knowledge on the interaction between the different hippocampal subregions. To fill this gap, we need information on the functional connectivity pattern of the hippocampal network. These data could complement our structural connectivity knowledge. To this end, we conducted a resting-state fMRI experiment in awake pigeons in a 7-T MR scanner. A voxel-wise regression analysis of blood oxygenation level-dependent (BOLD) fluctuations was performed in 6 distinct areas, dorsomedial (DM), dorsolateral (DL), triangular shaped (Tr), dorsolateral corticoid (CDL), temporo-parieto-occipital (TPO), and lateral septum regions (SL), to establish a functional connectivity map of the avian hippocampal network. Our study reveals that the system of connectivities between CDL, DL, DM, and Tr is the functional backbone of the pigeon hippocampal system. Within this network, DM is the central hub and is strongly associated with DL and CDL BOLD signal fluctuations. DM is also the only hippocampal region to which large Tr areas are functionally connected. In contrast to published tracing data, TPO and SL are only weakly integrated in this network. In summary, our findings uncovered a structurally otherwise invisible architecture of the avian hippocampal formation by revealing the dynamic blueprints of this network.


Subject(s)
Columbidae/physiology , Hippocampus/physiology , Animals , Cerebrovascular Circulation/physiology , Connectome , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Oxygen/blood , Rest
14.
J Vis Exp ; (124)2017 06 08.
Article in English | MEDLINE | ID: mdl-28654030

ABSTRACT

Cerebral malaria is a sign of severe malarial disease and is often a harbinger of death. While aggressive management can be life-saving, the detection of cerebral malaria can be difficult. We present an experimental mouse model of cerebral malaria that shares multiple features of the human disease, including edema and microvascular pathology. Using magnetic resonance imaging (MRI), we can detect and track the blood-brain barrier disruption, edema development, and subsequent brain swelling. We describe multiple MRI techniques that can visualize these pertinent pathological changes. Thus, we show that MRI represents a valuable tool to visualize and track pathological changes, such as edema, brain swelling, and microvascular pathology, in vivo.


Subject(s)
Edema/diagnostic imaging , Magnetic Resonance Imaging/methods , Malaria, Cerebral/diagnostic imaging , Animals , Brain/blood supply , Disease Models, Animal , Edema/pathology , Humans , Malaria, Cerebral/pathology , Mice
15.
Z Med Phys ; 27(4): 300-309, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28506858

ABSTRACT

Non-invasive detection of 2-hydroxyglutarate (2HG) by magnetic resonance spectroscopy is attractive since it is related to tumor metabolism. Here, we compare the detection accuracy of 2HG in a controlled phantom setting via widely used localized spectroscopy sequences quantified by linear combination of metabolite signals vs. a more complex approach applying a J-difference editing technique at 9.4T. Different phantoms, comprised out of a concentration series of 2HG and overlapping brain metabolites, were measured with an optimized point-resolved-spectroscopy sequence (PRESS) and an in-house developed J-difference editing sequence. The acquired spectra were post-processed with LCModel and a simulated metabolite set (PRESS) or with a quantification formula for J-difference editing. Linear regression analysis demonstrated a high correlation of real 2HG values with those measured with the PRESS method (adjusted R-squared: 0.700, p<0.001) as well as with those measured with the J-difference editing method (adjusted R-squared: 0.908, p<0.001). The regression model with the J-difference editing method however had a significantly higher explanatory value over the regression model with the PRESS method (p<0.0001). Moreover, with J-difference editing 2HG was discernible down to 1mM, whereas with the PRESS method 2HG values were not discernable below 2mM and with higher systematic errors, particularly in phantoms with high concentrations of N-acetyl-asparate (NAA) and glutamate (Glu). In summary, quantification of 2HG with linear combination of metabolite signals shows high systematic errors particularly at low 2HG concentration and high concentration of confounding metabolites such as NAA and Glu. In contrast, J-difference editing offers a more accurate quantification even at low 2HG concentrations, which outweighs the downsides of longer measurement time and more complex postprocessing.


Subject(s)
Brain Neoplasms/pathology , Glutarates/analysis , Magnetic Resonance Spectroscopy , Brain Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy/standards , Phantoms, Imaging , Regression Analysis
16.
PLoS One ; 12(3): e0172084, 2017.
Article in English | MEDLINE | ID: mdl-28264039

ABSTRACT

OBJECTIVE: Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis. RESULTS: Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast. CONCLUSION: This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise localization of tissue damage free of MR contrast agents.


Subject(s)
Magnetic Resonance Imaging , Myocarditis/diagnostic imaging , Myocarditis/virology , Acute Disease , Animals , Biopsy , Chronic Disease , Disease Models, Animal , Magnetic Resonance Imaging/methods , Mice , Myocarditis/pathology , Myocardium/pathology , Myocardium/ultrastructure , Time Factors
17.
PLoS Pathog ; 12(3): e1005470, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26964100

ABSTRACT

It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal pattern of microglial activation in ECM involving primarily the OB+RMS axis, a distinct pathway utilized by neuroblasts and immune cells. Our data suggest significant crosstalk between these two cell populations to be operative in deeper brain infiltration and further imply that the manifestation and progression of cerebral malaria may depend on brain areas otherwise serving neurogenesis.


Subject(s)
Anopheles/parasitology , Malaria, Cerebral/diagnostic imaging , Plasmodium berghei/physiology , Animals , Brain/diagnostic imaging , Disease Models, Animal , Female , Follow-Up Studies , Longitudinal Studies , Magnetic Resonance Imaging , Malaria, Cerebral/parasitology , Male , Mice, Inbred C57BL , Microglia/diagnostic imaging , Neural Stem Cells/diagnostic imaging , Olfactory Bulb/diagnostic imaging , Radiography
18.
Elife ; 5: e11712, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26830460

ABSTRACT

Neoangiogenesis is a pivotal therapeutic target in glioblastoma. Tumor monitoring requires imaging methods to assess treatment effects and disease progression. Until now mapping of the tumor vasculature has been difficult. We have developed a combined magnetic resonance and optical toolkit to study neoangiogenesis in glioma models. We use in vivo magnetic resonance imaging (MRI) and correlative ultramicroscopy (UM) of ex vivo cleared whole brains to track neovascularization. T2* imaging allows the identification of single vessels in glioma development and the quantification of neovessels over time. Pharmacological VEGF inhibition leads to partial vascular normalization with decreased vessel caliber, density, and permeability. To further resolve the tumor microvasculature, we performed correlated UM of fluorescently labeled microvessels in cleared brains. UM resolved typical features of neoangiogenesis and tumor cell invasion with a spatial resolution of ~5 µm. MR-UM can be used as a platform for three-dimensional mapping and high-resolution quantification of tumor angiogenesis.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Magnetic Resonance Imaging/methods , Microscopy/methods , Neovascularization, Pathologic , Animals , Disease Models, Animal , Fluorescent Dyes , Mice, Inbred C57BL , Staining and Labeling/methods
19.
PLoS One ; 11(2): e0148441, 2016.
Article in English | MEDLINE | ID: mdl-26863147

ABSTRACT

Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.


Subject(s)
Hypoxia-Ischemia, Brain/pathology , Intracranial Hemorrhages/physiopathology , Magnetic Resonance Imaging/methods , Olfactory Bulb/pathology , Altitude , Altitude Sickness/physiopathology , Animals , Brain/pathology , Brain Injuries/pathology , Cerebral Hemorrhage/pathology , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Edema/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/metabolism , Oxygen/metabolism , Zonula Occludens-1 Protein/metabolism
20.
Magn Reson Med ; 76(6): 1887-1894, 2016 12.
Article in English | MEDLINE | ID: mdl-26743137

ABSTRACT

PURPOSE: An algorithm is presented to enable cardiac and respiratory self-gating in combination with Inversion Recovery Look-Locker read-outs. METHODS: A radial inversion recovery snapshot FLASH sequence was adapted for retrospective cardiac T1 measurements in mice. Cardiac and respiratory data were extracted from the k-space center of radial projections and an adapted method for retrospective cardiac synchronization is introduced. Electrocardiogram (ECG) data was acquired concurrently for validation of the proposed self-gating technique. T1 maps generated by the proposed technique were compared with maps reconstructed with the ECG reference. RESULTS: Respiratory gating and cardiac trigger points could be obtained for the whole time course of the relaxation dynamic and correlate very well to the ECG signal. T1 maps reconstructed with the self-gating technique are in very good agreement with maps reconstructed with the external reference. CONCLUSION: The proposed method extends "wireless" cardiac MRI to non-steady-state inversion recovery measurements. T1 maps were generated with a quality comparable to ECG based reconstructions. As the method does not rely on an ECG trigger signal it provides easier animal handling. Magn Reson Med 76:1887-1894, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Artifacts , Cardiac-Gated Imaging Techniques/methods , Image Enhancement/methods , Magnetic Resonance Imaging, Cine/methods , Myocardial Infarction/diagnostic imaging , Respiratory-Gated Imaging Techniques/methods , Algorithms , Animals , Female , Image Interpretation, Computer-Assisted/methods , Male , Mice , Mice, Inbred C57BL , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...