Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Inherit Metab Dis ; 47(2): 387-403, 2024 03.
Article in English | MEDLINE | ID: mdl-38200656

ABSTRACT

Cerebral folate transport deficiency, caused by a genetic defect in folate receptor α, is a devastating neurometabolic disorder that, if untreated, leads to epileptic encephalopathy, psychomotor decline and hypomyelination. Currently, there are limited data on effective dosage and duration of treatment, though early diagnosis and therapy with folinic acid appears critical. The aim of this long-term study was to identify new therapeutic approaches and novel biomarkers for assessing efficacy, focusing on myelin-sensitive MRI. Clinical, biochemical, structural and quantitative MRI parameters of seven patients with genetically confirmed folate receptor α deficiency were acquired over 13 years. Multimodal MRI approaches comprised MR-spectroscopy (MRS), magnetization transfer (MTI) and diffusion tensor imaging (DTI) sequences. Patients started oral treatment immediately following diagnosis or in an interval of up to 2.5 years. Escalation to intravenous and intrathecal administration was performed in the absence of effects. Five patients improved, one with a presymptomatic start of therapy remained symptom-free, and one with inconsistent treatment deteriorated. While CSF 5-methyltetrahydrofolate and MRS parameters normalized immediately after therapy initiation, myelin-sensitive MTI and DTI measures correlated with gradual clinical improvement and ongoing myelination under therapy. Early initiation of treatment at sufficient doses, considering early intrathecal applications, is critical for favorable outcome. The majority of patients showed clinical improvements that correlated best with MTI parameters, allowing individualized monitoring of myelination recovery. Presymptomatic therapy seems to ensure normal development and warrants newborn screening. Furthermore, the quantitative parameters of myelin-sensitive MRI for therapy assessments can now be used for hypomyelination disorders in general.


Subject(s)
Diffusion Tensor Imaging , Folate Receptor 1 , Infant, Newborn , Humans , Folate Receptor 1/genetics , Myelin Sheath , Magnetic Resonance Imaging/methods , Biomarkers
2.
Magn Reson Med ; 89(4): 1385-1400, 2023 04.
Article in English | MEDLINE | ID: mdl-36373175

ABSTRACT

PURPOSE: Magnetization transfer saturation ( MTsat $$ \mathrm{MTsat} $$ ) is a useful marker to probe tissue macromolecular content and myelination in the brain. The increased B 1 + $$ {B}_1^{+} $$ -inhomogeneity at ≥ 7 $$ \ge 7 $$ T and significantly larger saturation pulse flip angles which are often used for postmortem studies exceed the limits where previous MTsat $$ \mathrm{MTsat} $$ B 1 + $$ {B}_1^{+} $$ correction methods are applicable. Here, we develop a calibration-based correction model and procedure, and validate and evaluate it in postmortem 7T data of whole chimpanzee brains. THEORY: The B 1 + $$ {B}_1^{+} $$ dependence of MTsat $$ \mathrm{MTsat} $$ was investigated by varying the off-resonance saturation pulse flip angle. For the range of saturation pulse flip angles applied in typical experiments on postmortem tissue, the dependence was close to linear. A linear model with a single calibration constant C $$ C $$ is proposed to correct bias in MTsat $$ \mathrm{MTsat} $$ by mapping it to the reference value of the saturation pulse flip angle. METHODS: C $$ C $$ was estimated voxel-wise in five postmortem chimpanzee brains. "Individual-based global parameters" were obtained by calculating the mean C $$ C $$ within individual specimen brains and "group-based global parameters" by calculating the means of the individual-based global parameters across the five brains. RESULTS: The linear calibration model described the data well, though C $$ C $$ was not entirely independent of the underlying tissue and B 1 + $$ {B}_1^{+} $$ . Individual-based correction parameters and a group-based global correction parameter ( C = 1 . 2 $$ C=1.2 $$ ) led to visible, quantifiable reductions of B 1 + $$ {B}_1^{+} $$ -biases in high-resolution MTsat $$ \mathrm{MTsat} $$ maps. CONCLUSION: The presented model and calibration approach effectively corrects for B 1 + $$ {B}_1^{+} $$ inhomogeneities in postmortem 7T data.


Subject(s)
Brain , Pan troglodytes , Animals , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Calibration
3.
NMR Biomed ; 36(6): e4863, 2023 06.
Article in English | MEDLINE | ID: mdl-36310022

ABSTRACT

Dynamic glucose-enhanced (DGE) MRI is used to study the signal intensity time course (tissue response curve) after D-glucose injection. D-glucose has potential as a biodegradable alternative or complement to gadolinium-based contrast agents, with DGE being comparable with dynamic contrast-enhanced (DCE) MRI. However, the tissue uptake kinetics as well as the detection methods of DGE differ from DCE MRI, and it is relevant to compare these techniques in terms of spatiotemporal enhancement patterns. This study aims to develop a DGE analysis method based on tissue response curve shapes, and to investigate whether DGE MRI provides similar or complementary information to DCE MRI. Eleven patients with suspected gliomas were studied. Tissue response curves were measured for DGE and DCE MRI at 7 T and the area under the curve (AUC) was assessed. Seven types of response curve shapes were postulated and subsequently identified by deep learning to create color-coded "curve maps" showing the spatial distribution of different curve types. DGE AUC values were significantly higher in lesions than in normal tissue (p < 0.007). Furthermore, the distribution of curve types differed between lesions and normal tissue for both DGE and DCE. The DGE and DCE response curves in a 6-min postinjection time interval were classified as the same curve type in 20% of the lesion voxels, which increased to 29% when a 12-min DGE time interval was considered. While both DGE and DCE tissue response curve-shape analysis enabled differentiation of lesions from normal brain tissue in humans, their enhancements were neither temporally identical nor confined entirely to the same regions. Curve maps can provide accessible and intuitive information about the shape of DGE response curves, which is expected to be useful in the continued work towards the interpretation of DGE uptake curves in terms of D-glucose delivery, transport, and metabolism.


Subject(s)
Brain Neoplasms , Glucose , Humans , Magnetic Resonance Imaging/methods , Contrast Media , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging
4.
J Neuroimaging ; 32(3): 442-458, 2022 05.
Article in English | MEDLINE | ID: mdl-35128747

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral tissue oxygenation is a critical brain viability parameter, and the magnetic properties of hemoglobin offer the opportunity to noninvasively quantify oxygen extraction fraction (OEF) by magnetic resonance imaging (MRI). Ultrahigh-field MRI shows advantages such as increased sensitivity to magnetic susceptibility differences and improved signal-to-noise ratio that can be translated into smaller voxel size, but also increased sensitivity to static and B1 field inhomogeneities. The aim was to produce a systematic comparison of three MRI-based methods for estimation of OEF. METHODS: OEF estimates in 16 healthy subjects were obtained at 7T utilizing susceptometry-based oximetry (SBO), quantitative susceptibility mapping (QSM), and transverse relaxation rate (R2*). Two major draining veins, that is, the superior sagittal sinus (SSS) and the straight sinus (SS), were investigated, including mutual agreement between the methods in each of the two different vessels, agreement between vessels as well as potential vessel angle and vessel size dependences. RESULTS: Very good correlation (r = .88) was found between SBO-based and QSM-based OEF estimates in SSS. Only QSM showed a moderate correlation (r = .61) between corresponding OEF estimates in SSS and SS. For SBO, a trend of increasing OEF estimates was observed as the SS vessel angle relative to the main magnetic field increased. No obvious size dependence could be established for any method. The R2*-based OEF estimates were reasonable (35%-36%), but the observed range was somewhat low. CONCLUSION: The results indicate that QSM is a promising candidate for assessment of OEF estimates, for example, providing reasonably robust estimates across a wide range of vessel orientations.


Subject(s)
Brain Mapping , Oxygen , Brain/blood supply , Brain/diagnostic imaging , Brain Mapping/methods , Cerebrovascular Circulation , Humans , Magnetic Resonance Imaging/methods
5.
Magn Reson Med ; 87(6): 2637-2649, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35037283

ABSTRACT

PURPOSE: To map T1 and the local flip angle ( B 1 + ) in human brain using a single MP3RAGE sequence with 3 rapid acquisitions of gradient echoes (RAGEs). THEORY AND METHODS: A third RAGE with a relatively high flip angle was appended to an MP2RAGE sequence. Through curve fitting and a rational approximation for small flip angles and short TR, closed form solutions for T1 and B 1 + were derived. The influence of different k-space encoding schemes on precision and whether edge enhancement artifacts could be reduced with a saturation pulse applied prior to the third RAGE were explored. Validation of T1 estimates was performed using single-slice inversion recovery (IR) and a subsequent region-of-interest-based comparison, whereas validation of B 1 + was performed using a whole brain pixelwise comparison to a DREAM flip angle mapping protocol. Lastly, MP3RAGE was compared to T1 -mapping by MP2RAGE with separate B 1 + correction. RESULTS: Whole brain maps of T1 and B 1 + at 1 mm isotropic resolution were obtained with MP3RAGE in 06:37 min. A linear-reverse centric-reverse centric phase-encoding order of the 3 RAGEs improved precision, and artifacts were successfully reduced with the saturation pulse. Estimations of T1 and B 1 + deviated +2.5 ± 3.1% and -1.7 ± 8.6% from their respective references. CONCLUSION: T1 and B 1 + can be mapped simultaneously using MP3RAGE. The approach can be thought of as combining MP2RAGE with a dual flip angle T1 -mapping protocol. Both maps can be solved for analytically and will be inherently co-registered at the high resolution associated with MPRAGE.


Subject(s)
Brain , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reproducibility of Results
6.
NMR Biomed ; 35(2): e4624, 2022 02.
Article in English | MEDLINE | ID: mdl-34585813

ABSTRACT

Dynamic glucose-enhanced (DGE) magnetic resonance imaging (MRI) has shown potential for tumor imaging using D-glucose as a biodegradable contrast agent. The DGE signal change is small at 3 T (around 1%) and accurate detection is hampered by motion. The intravenous D-glucose injection is associated with transient side effects that can indirectly generate subject movements. In this study, the aim was to study DGE arterial input functions (AIFs) in healthy volunteers at 3 T for different scanning protocols, as a step towards making the glucose chemical exchange saturation transfer (glucoCEST) protocol more robust. Two different infusion durations (1.5 and 4.0 min) and saturation frequency offsets (1.2 and 2.0 ppm) were used. The effect of subject motion on the DGE signal was studied by using motion estimates retrieved from standard retrospective motion correction to create pseudo-DGE maps, where the apparent DGE signal changes were entirely caused by motion. Furthermore, the DGE AIFs were compared with venous blood glucose levels. A significant difference (p = 0.03) between arterial baseline and postinfusion DGE signal was found after D-glucose infusion. The results indicate that the measured DGE AIF signal change depends on both motion and blood glucose concentration change, emphasizing the need for sufficient motion correction in glucoCEST imaging. Finally, we conclude that a longer infusion duration (e.g. 3-4 min) should preferably be used in glucoCEST experiments, because it can minimize the glucose infusion side effects without negatively affecting the DGE signal change.


Subject(s)
Glucose/chemistry , Magnetic Resonance Imaging/methods , Adult , Blood Glucose/analysis , Humans , Image Enhancement , Male , Time Factors
8.
Tomography ; 7(3): 434-451, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34564300

ABSTRACT

At field strengths of 7 T and above, T1-weighted imaging of human brain suffers increasingly from radiofrequency (RF) B1 inhomogeneities. The well-known MP2RAGE (magnetization prepared two rapid acquisition gradient echoes) sequence provides a solution but may not be readily available for all MR systems. Here, we describe the implementation and evaluation of a sequential protocol to obtain normalized magnetization prepared rapid gradient echo (MPRAGE) images at 0.7, 0.8, or 0.9-mm isotropic spatial resolution. Optimization focused on the reference gradient-recalled echo (GRE) that was used for normalization of the MPRAGE. A good compromise between white-gray matter contrast and the signal-to-noise ratio (SNR) was reached at a flip angle of 3° and total scan time was reduced by increasing the reference voxel size by a factor of 8 relative to the MPRAGE resolution. The average intra-subject coefficient-of-variation (CV) in segmented white matter (WM) was 7.9 ± 3.3% after normalization, compared to 20 ± 8.4% before. The corresponding inter-subject average CV in WM was 7.6 ± 7.6% and 13 ± 7.8%. Maps of T1 derived from forward signal modelling showed no obvious bias after correction by a separately acquired flip angle map. To conclude, a non-interleaved acquisition for normalization of MPRAGE offers a simple alternative to MP2RAGE to obtain semi-quantitative purely T1-weighted images. These images can be converted to T1 maps, analogously to the established MP2RAGE approach. Scan time can be reduced by increasing the reference voxel size which has only a miniscule effect on image quality.


Subject(s)
Magnetic Resonance Imaging , White Matter , Brain/diagnostic imaging , Gray Matter , Humans , Signal-To-Noise Ratio , White Matter/diagnostic imaging
9.
Front Neurosci ; 15: 674719, 2021.
Article in English | MEDLINE | ID: mdl-34290579

ABSTRACT

G-ratio weighted imaging is a non-invasive, in-vivo MRI-based technique that aims at estimating an aggregated measure of relative myelination of axons across the entire brain white matter. The MR g-ratio and its constituents (axonal and myelin volume fraction) are more specific to the tissue microstructure than conventional MRI metrics targeting either the myelin or axonal compartment. To calculate the MR g-ratio, an MRI-based myelin-mapping technique is combined with an axon-sensitive MR technique (such as diffusion MRI). Correction for radio-frequency transmit (B1+) field inhomogeneities is crucial for myelin mapping techniques such as magnetization transfer saturation. Here we assessed the effect of B1+ correction on g-ratio weighted imaging. To this end, the B1+ field was measured and the B1+ corrected MR g-ratio was used as the reference in a Bland-Altman analysis. We found a substantial bias (≈-89%) and error (≈37%) relative to the dynamic range of g-ratio values in the white matter if the B1+ correction was not applied. Moreover, we tested the efficiency of a data-driven B1+ correction approach that was applied retrospectively without additional reference measurements. We found that it reduced the bias and error in the MR g-ratio by a factor of three. The data-driven correction is readily available in the open-source hMRI toolbox (www.hmri.info) which is embedded in the statistical parameter mapping (SPM) framework.

10.
Hum Brain Mapp ; 42(15): 5037-5050, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34288240

ABSTRACT

People learn new languages with varying degrees of success but what are the neuroanatomical correlates of the difference in language-learning aptitude? In this study, we set out to investigate how differences in cortical morphology and white matter microstructure correlate with aptitudes for vocabulary learning, phonetic memory, and grammatical inferencing as measured by the first-language neutral LLAMA test battery. We used ultra-high field (7T) magnetic resonance imaging to estimate the cortical thickness and surface area from sub-millimeter resolved image volumes. Further, diffusion kurtosis imaging was used to map diffusion properties related to the tissue microstructure from known language-related white matter tracts. We found a correlation between cortical surface area in the left posterior-inferior precuneus and vocabulary learning aptitude, possibly indicating a greater predisposition for storing word-figure associations. Moreover, we report negative correlations between scores for phonetic memory and axial kurtosis in left arcuate fasciculus as well as mean kurtosis, axial kurtosis, and radial kurtosis of the left superior longitudinal fasciculus III, which are tracts connecting cortical areas important for phonological working memory.


Subject(s)
Aptitude/physiology , Cerebral Cortex/anatomy & histology , Learning/physiology , Magnetic Resonance Imaging , Psycholinguistics , White Matter/anatomy & histology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , White Matter/diagnostic imaging , Young Adult
11.
Magn Reson Med ; 86(5): 2562-2576, 2021 11.
Article in English | MEDLINE | ID: mdl-34196043

ABSTRACT

PURPOSE: To optimize a whole-brain magnetization transfer saturation (MTsat ) protocol at 7T, focusing on maximizing obtainable MTsat under the constraints of specific absorption rate (SAR) and transmit field inhomogeneity, while avoiding bias and keeping scan time short. THEORY AND METHODS: MTsat is a semi-quantitative metric, obtained by spoiled gradient-echo MRI in the imaging steady-state. Optimization was based on an established 7T dual flip angle protocol, and focused on MT pulse, readout flip angle, repetition time (TR), offset frequency (Δ), and correction of residual effects from transmit field inhomogeneities by separate flip angle mapping. RESULTS: A 100% SAR level was reached at a 180° MT pulse flip angle, using a compact sinc main lobe (4 ms duration) and minimum TR = 26.5 ms. The use of Δ = +2.0 kHz caused no discernible direct saturation, while Δ = -2.0 kHz resulted in 45% higher MTsat in white matter (WM) compared to Δ = +2.0 kHz. A 4° readout flip angle eliminated bias while yielding a good signal-to-noise ratio. Increased TR yielded only a little increase in MTsat , and TR = 26.5 ms (scan time 04:58 min) was thus selected. Post hoc transmit field correction clearly improved homogeneity, especially in WM. CONCLUSIONS: The range of MTsat is limited at 7T, and this can partly be overcome by the exploitation of the asymmetry of the macromolecular lineshape through the sign of Δ. To reduce scan time, a compact MT pulse with a sufficiently narrow frequency response should be used. TR and readout flip angle should be kept short/small. Transmit field correction through separate flip angle mapping is required.


Subject(s)
Brain , White Matter , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Signal-To-Noise Ratio
12.
NMR Biomed ; 34(2): e4429, 2021 02.
Article in English | MEDLINE | ID: mdl-33118238

ABSTRACT

INTRODUCTION: Multi-component T2 mapping using a gradient- and spin-echo (GraSE) acquisition has become standard for myelin water imaging at 3 T. Higher magnetic field strengths promise signal-to-noise ratio benefits but face specific absorption rate limits and shortened T2 times. This study investigates compartmental T2 times in vivo and addresses advantages and challenges of multi-component T2 mapping at 7 T. METHODS: We acquired 3D multi-echo GraSE data in seven healthy adults at 7 T, with three subjects also scanned at 3 T. Stimulated echoes arising from B1+ inhomogeneities were accounted for by the extended phase graph (EPG) algorithm. We used the computed T2 distributions to determine T2 times that identify different water pools and assessed signal-to-noise and fit-to-noise characteristics of the signal estimation. We compared short T2 fractions and T2 properties of the intermediate water pool at 3 T and 7 T. RESULTS: Flip angle mapping confirmed that EPG accurately determined the larger B1+ inhomogeneity at 7 T. Multi-component T2 analysis demonstrated shortened T2 times at 7 T compared with 3 T. Fit-to-noise and signal-to-noise ratios were improved at 7 T but depended on B1+ homogeneity. Adjusting the shortest T2 to 8 ms and the T2 threshold that separates different water compartments to 20 ms yielded short T2 fractions at 7 T that conformed to 3 T data. Short T2 fractions in myelin-rich white matter regions were lower at 7 T than at 3 T, and higher in iron-rich structures. DISCUSSION: Adjusting the T2 compartment boundaries was required due to the shorter T2 relaxation times at 7 T. Shorter echo spacing would better sample the fast decaying signal but would increase peripheral nerve stimulation. Multi-channel transmission will improve T2 measurements at 7 T. CONCLUSION: We used a multi-echo 3D GraSE sequence to characterize the multi-exponential T2 decay at 7 T. We adapted T2 parameters for evaluation of the short T2 fraction. Obtained 7 T multi-component T2 maps were in good agreement with 3 T data.


Subject(s)
Body Water , Echo-Planar Imaging/methods , Myelin Sheath/chemistry , White Matter/diagnostic imaging , Adult , Female , Humans , Male , Middle Aged , Young Adult
13.
Magn Reson Imaging ; 72: 71-77, 2020 10.
Article in English | MEDLINE | ID: mdl-32645432

ABSTRACT

DREAM (Dual Refocusing Echo Acquisition Mode) is an ultra-fast multi-slice B1+-mapping technique based on the single-shot STEAM sequence. To study systematic errors at high actual flip angles (FA) and low SNR, DREAM B1+ maps at 3.75×3.75×3.50 mm3 resolution were acquired at 7T in phantoms and human brain in vivo with nominal FAs between 20° and 90° for the two STEAM preparation pulses. Predicted B1+ estimates were underestimated at actual FAs above 50° while noise was prominent below 20°. With a reliable interval of the actual FA between 20° and 50° identified, a B1+ range of 33% - 200% of nominal FA is covered by varying the nominal preparation angle through 25°, 40°, and 60°. Individual B1+ maps are thresholded according to the identified interval and combined into a single map. We demonstrate the benefit of the combined low-noise, low-bias B1+ maps for dual flip angle T1-mapping.


Subject(s)
Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Humans , Phantoms, Imaging , Reproducibility of Results
14.
Hum Brain Mapp ; 41(15): 4232-4247, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32639104

ABSTRACT

Multicenter clinical and quantitative magnetic resonance imaging (qMRI) studies require a high degree of reproducibility across different sites and scanner manufacturers, as well as time points. We therefore implemented a multiparameter mapping (MPM) protocol based on vendor's product sequences and demonstrate its repeatability and reproducibility for whole-brain coverage. Within ~20 min, four MPM metrics (magnetization transfer saturation [MT], proton density [PD], longitudinal [R1], and effective transverse [R2*] relaxation rates) were measured using an optimized 1 mm isotropic resolution protocol on six 3 T MRI scanners from two different vendors. The same five healthy participants underwent two scanning sessions, on the same scanner, at each site. MPM metrics were calculated using the hMRI-toolbox. To account for different MT pulses used by each vendor, we linearly scaled the MT values to harmonize them across vendors. To determine longitudinal repeatability and inter-site comparability, the intra-site (i.e., scan-rescan experiment) coefficient of variation (CoV), inter-site CoV, and bias across sites were estimated. For MT, R1, and PD, the intra- and inter-site CoV was between 4 and 10% across sites and scan time points for intracranial gray and white matter. A higher intra-site CoV (16%) was observed in R2* maps. The inter-site bias was below 5% for all parameters. In conclusion, the MPM protocol yielded reliable quantitative maps at high resolution with a short acquisition time. The high reproducibility of MPM metrics across sites and scan time points combined with its tissue microstructure sensitivity facilitates longitudinal multicenter imaging studies targeting microstructural changes, for example, as a quantitative MRI biomarker for interventional clinical trials.


Subject(s)
Brain Mapping/standards , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Adult , Brain Mapping/instrumentation , Brain Mapping/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Reproducibility of Results
15.
Magn Reson Med ; 84(3): 1347-1358, 2020 09.
Article in English | MEDLINE | ID: mdl-32060952

ABSTRACT

PURPOSE: To address the systematic bias in whole-brain dual flip angle (DFA) T1 -mapping at 7T by optimizing the flip angle pair and carefully selecting radiofrequency (RF) pulse shape and duration. THEORY AND METHODS: Spoiled gradient echoes can be used to estimate whole-brain maps of T1 . This can be accomplished by using only two acquisitions with different flip angles, that is, a DFA-based approach. Although DFA-based T1 -mapping is seemingly straightforward to implement, it is sensitive to bias caused by incomplete spoiling and incidental magnetization transfer effects. Further bias is introduced by the increased B0 and B1+ inhomogeneities at 7T. Experiments were performed to determine the optimal flip angle pair and appropriate RF pulse shape and duration. Obtained T1 estimates were validated using inversion recovery prepared echo planar imaging and compared to literature values. A multi-echo readout was used to increase signal-to-noise ratio, enabling quantification of R2∗ and susceptibility, χ. RESULTS: Incomplete spoiling was observed above a local flip angle of approximately 20°. An asymmetric gauss-filtered sinc pulse with a constant duration of 700 µs showed a sufficiently flat frequency response profile to avoid incomplete excitation in areas with high B0 offsets. A pulse duration of 700 µs minimized effects from incidental magnetization transfer. CONCLUSION: When performing DFA-based T1 -mapping one should (a) limit the higher flip angle to avoid incomplete spoiling, (b) use a RF pulse shape insensitive to B0 inhomogeneities and (c) apply a constant RF pulse duration, balanced to minimize incidental magnetization transfer.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Bias , Brain/diagnostic imaging , Brain Mapping , Humans , Phantoms, Imaging
16.
Histol Histopathol ; 35(8): 871-886, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32022242

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive primary brain malignancy with a very poor prognosis. Researchers employ animal models to develop potential therapies. It is important that these models have clinical relevance. This means that old models, propagated for decades in cultures, should be questioned. Parameters to be evaluated include whether animals are immune competent or not, the infiltrative growth pattern of the tumor, tumor volume resulting in symptoms and growth rate. We here describe the growth pattern of an experimental glioblastoma model in detail with GFP positive glioblastoma cells in fully immune competent animals and study tumor growth rate and tumor mass as a function of time from inoculation. We were able to correlate findings made with classical immunohistochemistry and MR findings. The tumor growth rate was fitted by a Gompertz function. The model predicted the time until onset of symptoms for 5000 inoculated cells to 18.7±0.4 days, and the tumor mass at days 10 and 14, which are commonly used as the start of treatment in therapeutic studies, were 5.97±0.62 mg and 29.1±3.0 mg, respectively. We want to raise the question regarding the clinical relevance of the outline of glioblastoma experiments, where treatment is often initiated at a very early stage. The approach presented here could potentially be modified to gain information also from other tumor models.


Subject(s)
Brain Neoplasms/pathology , Disease Models, Animal , Glioblastoma/pathology , Neoplasm Transplantation/methods , Animals , Cell Line, Tumor , Cell Proliferation , Rats , Rats, Inbred F344
17.
Brain Imaging Behav ; 14(2): 515-526, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31686308

ABSTRACT

Higher glutamate and glutamine (together: Glx) and lower N-acetyl-aspartate (NAA) levels were reported in schizophrenia. Endurance training normalizes NAA in the hippocampus, but its effects on other metabolites in the brain and the relationship of metabolites to clinical symptoms remain unknown. For 12 weeks, 20 schizophrenia inpatients (14 men, 6 women) and 23 healthy controls (16 men, 7 women) performed endurance training and a control group of 21 schizophrenia inpatients (15 men, 6 women) played table soccer. A computer-assisted cognitive performance training program was introduced after 6 weeks. We assessed cognitive performance, psychopathological symptoms, and everyday functioning at baseline and after 6 and 12 weeks and performed single voxel magnetic resonance spectroscopy of the hippocampus, left dorsolateral prefrontal cortex (DLPFC), and thalamus. We quantified NAA, Glx, total creatine (tCr), calculated NAA/tCr and Glx/tCr and correlated these ratios with physical fitness, clinical and neurocognitive scores, and everyday functioning. At baseline, in both schizophrenia groups NAA/tCr was lower in the left DLPFC and left hippocampus and Glx/tCr was lower in the hippocampus than in the healthy controls. After 6 weeks, NAA/tCr increased in the left DLPFC in both schizophrenia groups. Brain metabolites did not change significantly in the hippocampus or thalamus, but the correlation between NAA/tCr and Glx/tCr normalized in the left DLPFC. Global Assessment of Functioning improvements correlated with NAA/tCr changes in the left DLPFC. In our study, endurance training and table soccer induced normalization of brain metabolite ratios in the brain circuitry associated with neuronal and synaptic elements, including metabolites of the glutamatergic system.


Subject(s)
Cognition/physiology , Hippocampus/metabolism , Schizophrenia/metabolism , Adult , Aspartic Acid/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Creatine/metabolism , Endurance Training/methods , Female , Glutamic Acid/metabolism , Glutamine/metabolism , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Inpatients , Magnetic Resonance Spectroscopy/methods , Male , Neurons/metabolism , Prefrontal Cortex/pathology , Thalamus/pathology
18.
Data Brief ; 25: 104132, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31297422

ABSTRACT

The hMRI toolbox is an open-source toolbox for the calculation of quantitative MRI parameter maps from a series of weighted imaging data, and optionally additional calibration data. The multi-parameter mapping (MPM) protocol, incorporating calibration data to correct for spatial variation in the scanner's transmit and receive fields, is the most complete protocol that can be handled by the toolbox. Here we present a dataset acquired with such a full MPM protocol, which is made freely available to be used as a tutorial by following instructions provided on the associated toolbox wiki pages, which can be found at http://hMRI.info, and following the theory described in: hMRI - A toolbox for quantitative MRI in neuroscience and clinical research [1].

19.
Neuroimage ; 194: 191-210, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30677501

ABSTRACT

Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates R1 and R2⋆, proton density PD and magnetisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.


Subject(s)
Brain Mapping/methods , Datasets as Topic , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neurosciences/methods , Humans
20.
Magn Reson Med ; 81(4): 2223-2237, 2019 04.
Article in English | MEDLINE | ID: mdl-30417930

ABSTRACT

PURPOSE: To develop a method for retrospective artifact elimination of MRS data. This retrospective method was based on an approach that combines jackknife analyses with the correlation of spectral windows, and therefore termed "JKC." METHODS: Twelve healthy volunteers performed 3 separate measurement protocols using a 3T MR system. One protocol consisted of 2 cerebellar MEGA-PRESS measurements: 1 reference and 1 measurement including head movements. One-third of the artifact-influenced datasets were treated as training data for the implementation the JKC method, and the rest were used for validation. RESULTS: The implemented JKC method correctly characterized most of the validation data. Additionally, after elimination of the detected artifacts, the resulting concentrations were much closer to those computed for the reference datasets. Moreover, when the JKC method was applied to the reference data, the estimated concentrations were not affected, compared with standard averaging. CONCLUSION: The implemented JKC method can be applied without any extra cost to MRS data, regardless of whether the dataset has been contaminated by artifacts. Furthermore, the results indicate that the JKC method could be used as a quality control of a dataset, or as an indication of whether a shift in voxel placement has occurred during the measurement.


Subject(s)
Artifacts , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Adult , Algorithms , Female , Head/diagnostic imaging , Healthy Volunteers , Humans , Male , Middle Aged , Movement , Phantoms, Imaging , Reference Values , Young Adult , gamma-Aminobutyric Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...