Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 86(5): 2482-2496, 2021 11.
Article in English | MEDLINE | ID: mdl-34196049

ABSTRACT

PURPOSE: To introduce and characterize inexpensive and easily produced 3D-printed axon-mimetic diffusion MRI phantoms in terms of pore geometry and diffusion kurtosis imaging metrics. METHODS: Phantoms were 3D-printed with a composite printing material that, after the dissolution of the polyvinyl alcohol, exhibits microscopic fibrous pores. Confocal microscopy and synchrotron phase-contrast micro-CT imaging were performed to visualize and assess the pore sizes. Diffusion MRI scans of four identical phantoms and phantoms with varying print parameters in water were performed at 9.4 T. Diffusion kurtosis imaging was fit to both data sets and used to assess the reproducibility between phantoms and effects of print parameters on diffusion kurtosis imaging metrics. Identical scans were performed 25 and 76 days later, to test their stability. RESULTS: Segmentation of pores in three microscopy images yielded a mean, median, and SD of equivalent pore diameters of 7.57 µm, 3.51 µm, and 12.13 µm, respectively. Phantoms had T1 /T2 = 2 seconds/180 ms, and those with identical parameters showed a low coefficient of variation (~10%) in mean diffusivity (1.38 × 10-3 mm2 /s) and kurtosis (0.52) metrics and radial diffusivity (1.01 × 10-3 mm2 /s) and kurtosis (1.13) metrics. Printing temperature and speed had a small effect on diffusion kurtosis imaging metrics (< 16%), whereas infill density had a larger and more variable effect (> 16%). The stability analysis showed small changes over 2.5 months (< 7%). CONCLUSION: Three-dimension-printed axon-mimetic phantoms can mimic the fibrous structure of axon bundles on a microscopic scale, serving as complex, anisotropic diffusion MRI phantoms.


Subject(s)
Axons , Diffusion Magnetic Resonance Imaging , Phantoms, Imaging , Printing, Three-Dimensional , Reproducibility of Results
2.
Otol Neurotol ; 41(1): e21-e27, 2020 01.
Article in English | MEDLINE | ID: mdl-31634281

ABSTRACT

HYPOTHESIS: Evaluating the accuracy of cochlear duct length (CDL) measurements from a published three-dimensional (3D) analytical cochlear model using Synchrotron Radiation Phase-Contrast Imaging (SR-PCI) data will help determine its clinical applicability and allow for model adjustments to increase accuracy. BACKGROUND: Accurate CDL determination can aid in cochlear implant sizing for full coverage and frequency map programming, which has the potential to improve hearing outcomes in patients. To overcome problems with the currently available techniques for CDL determination, a novel 3D analytical cochlear model, dependent on four basal turn distances, was proposed in the literature. METHODS: SR-PCI data from 11 cadaveric human cochleae were used to obtain reference measurements. CDL values generated by the analytical cochlear model were evaluated in two conditions: when the number of cochlear turns (NCT) were automatically predicted based on the four input distances, and when the NCT were manually specified based on SR-PCI data. RESULTS: When the analytical cochlear model automatically predicted the NCT, the mean absolute error was 2.6 ±â€Š1.6 mm, with only 27% (3/11) of the samples having an error in the clinically acceptable range of ±1.5 mm. When the NCT were manually specified based on SR-PCI data, the mean absolute error was reduced to 1.0 ±â€Š0.6 mm, with 73% (8/11) of the samples having a clinically acceptable error. CONCLUSION: The 3D analytical cochlear model introduced in the literature is effective at modeling the 3D geometry of individual cochleae, however tuning in the NCT estimation is required.


Subject(s)
Cochlear Duct/diagnostic imaging , Imaging, Three-Dimensional/methods , Cochlear Duct/surgery , Humans , Male , Synchrotrons
SELECTION OF CITATIONS
SEARCH DETAIL
...