Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Org Inorg Au ; 4(1): 91-96, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38344016

ABSTRACT

A distinguished triplet splitting pattern for the 14N-1H couplings in the proton signals of a series of protonated nitrogen bases-aliphatic and aromatic amines, as well as pyridines-with the weakly coordinating tetrakis(pentafluorophenyl)borate anion, [B(C6F5)4]-, is observed for the first time in nonaqueous media at room temperature. The effects of ion pairing, solvent parameters, and correlation between the δH, 1JNH, and pKa values are reported.

2.
ACS Omega ; 7(14): 12171-12185, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449929

ABSTRACT

Cenotes are habitats with unique physical, chemical, and biological features. Unexplored microorganisms from these sinkholes represent a potential source of bioactive molecules. Thus, a series of cultivable fungi (Aspergillus spp. NCA257, NCA264, and NCA276, Stachybotrys sp. NCA252, and Cladosporium sp. NCA273) isolated from the cenote Tza Itzá were subjected to chemical, coculture, and metabolomic analyses. Nineteen compounds were obtained and tested for their antimicrobial potential against ESKAPE pathogens, Mycobacterium tuberculosis, and nontuberculous mycobacteria. In particular, phenylspirodrimanes from Stachybotrys sp. NCA252 showed significant activity against MRSA, MSSA, and mycobacterial strains. On the other hand, the absolute configuration of the new compound 17-deoxy-aspergillin PZ (1) isolated from Aspergillus sp. NCA276 was established via single-crystal X-ray crystallography. Also, the chemical analysis of the cocultures between Aspergillus and Cladosporium strains revealed the production of metabolites that were not present or were barely detected in the monocultures. Finally, molecular networking analysis of the LC-MS-MS/MS data for each fungus was used as a tool for the annotation of additional compounds, increasing the chemical knowledge on the corresponding fungal strains. Overall, this is the first systematic chemical study on fungi isolated from a sinkhole in Mexico.

3.
Planta Med ; 88(9-10): 729-734, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35354220

ABSTRACT

Chemical investigation of Punctularia atropurpurascens strain HM1 (Punctulariaceae), a corticioid isolated from a decorticated piece of Quercus bark collected in Bosque de Tlalpan, Mexico City, led to the isolation of a new drimane, 1-α-hydroxy-isodrimenine (1: ) and a new tetrahydroxy kauranol, 16-hydroxy-phlebia-nor-kauranol (2: ), together with the known N-phenylacetamide (3: ). Structures of all compounds were elucidated by spectroscopic and spectrometric methods, and the absolute configuration of 1: and 2: was confirmed via single-crystal X-ray crystallography. The isolated compounds showed modest antimycobacterial activity.


Subject(s)
Basidiomycota , Terpenes , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray , Fungi , Molecular Structure , Terpenes/pharmacology
4.
Molecules ; 27(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35164265

ABSTRACT

The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (-110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•-)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear µ-peroxo species, [(tmpa)CuII-(O22-)-MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a µ-oxo complex, [(tmpa)CuII-O-MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-µ-peroxo species, i.e., [(tmpa)CuII-(O22-)-MnIV(TPP)-(O22-)-CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = -44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.

5.
J Org Chem ; 87(5): 2697-2710, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35077640

ABSTRACT

Hypocrellins and hypomycins are two subclasses of fungal perylenequinones with unique structural, biological, and photochemical properties. With the growing interest in these naturally occurring photosensitizers, more studies were warranted to better understand the structural relationships between these two subclasses of perylenequinones. In this study, the long-postulated biosynthetic precursor (7) of class B fungal perylenequinones was isolated and characterized from a Shiraia-like sp. (strain MSX60519). Furthermore, the electrochemical and chemical redox behaviors of hypocrellins and hypomycins were investigated under aerobic and anaerobic conditions. These studies served to define the structural relationship within hypocrellins (1-3), which was further supported by X-ray crystallography, and between hypocrellins and hypomycins (4-6). Chemical reductions of hypocrellins under anaerobic conditions identified the origin of hypomycin A (4), hypomycin C (5), and hypomycin E (6), which in turn served to confirm 4 and revise the absolute configurations of 5 and 6. Hypocrellins were shown to undergo reversible reduction and reoxidation under aerobic conditions, while in an anaerobic environment and longer time scale, the fully reduced form can, to some extent, undergo an intramolecular ring closing metathesis. This may impart a means of reductive pathway for self-protection against these phototoxins and explain the chemical diversity observed in the fungal metabolites.


Subject(s)
Ascomycota , Oxidation-Reduction
6.
J Inorg Biochem ; 225: 111593, 2021 12.
Article in English | MEDLINE | ID: mdl-34555598

ABSTRACT

In this study on model compounds for the resting oxidized state of the iron­copper binuclear center in cytochrome c oxidase (CcO), we describe the synthesis of a new µ-oxo-heme/Cu complex, [(TPP)FeIII-O-CuII(tmpa)][B(C6F5)4] (2) {TPP: tetraphenyl porphyrinate(2-); TMPA: tris(2-pyridylmethylamine)}, as well as two protonation events for three µ-oxo-heme/Cu complexes with varying peripheral substituents on the heme site. The addition of increasing amounts of strong acid to these µ-oxo-heme/Cu systems successively led to the generation of the corresponding µ-hydroxo, µ-aquo, and the dissociated complexes. The heme/Cu assemblies bridged through a water ligand are reported here for the first time and the 1H NMR and 19F NMR spectral properties are consistent with antiferromagnetically coupled high-spin iron(III) and copper(II) centers. By titration using a series of protonated amines, the pKa values for the corresponding µ-hydroxo-heme/Cu species (i.e., the first protonation event) have been reported and compared with the pKa ranges previously estimated for related systems. These synthetic systems may represent structural models for the oxidized FeIII-X-CuII resting state, or turnover intermediates and can be employed to clarify the nature of proton/electron transfer events in CcO. SYNOPSIS: The resting oxidized state of the cytochrome c oxidase active site contains an Fea3-OHx-CuB moiety. Here, we investigated two successive protonation events, for a series of µ-oxo-heme/Cu assemblies and reported the pKa values for the first protonation event. The µ-aquo-heme/Cu complexes described here are the first examples of such systems.


Subject(s)
Coordination Complexes/chemistry , Heme/analogs & derivatives , Amines/chemistry , Catalytic Domain , Coordination Complexes/chemical synthesis , Copper/chemistry , Electron Transport Complex IV/chemistry , Models, Chemical , Molecular Structure , Protons , Titrimetry
7.
Inorg Chem ; 60(18): 13876-13887, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34097396

ABSTRACT

The efficiency of the hydrogen evolution reaction (HER) can be facilitated by the presence of proton-transfer groups in the vicinity of the catalyst. A systematic investigation of the nature of the proton-transfer groups present and their interplay with bulk proton sources is warranted. The HERs electrocatalyzed by a series of iron porphyrins that vary in the nature and number of pendant amine groups are investigated using proton sources whose pKa values vary from ∼9 to 15 in acetonitrile. Electrochemical data indicate that a simple iron porphyrin (FeTPP) can catalyze the HER at this FeI state where the rate-determining step is the intermolecular protonation of a FeIII-H- species produced upon protonation of the iron(I) porphyrin and does not need to be reduced to its formal Fe0 state. A linear free-energy correlation of the observed rate with pKa of the acid source used suggests that the rate of the HER becomes almost independent of pKa of the external acid used in the presence of the protonated distal residues. Protonation to the FeIII-H- species during the HER changes from intermolecular in FeTPP to intramolecular in FeTPP derivatives with pendant basic groups. However, the inclusion of too many pendant groups leads to a decrease in HER activity because the higher proton binding affinity of these residues slows proton transfer for the HER. These results enrich the existing understanding of how second-sphere proton-transfer residues alter both the kinetics and thermodynamics of transition-metal-catalyzed HER.

8.
Dalton Trans ; 50(21): 7433-7455, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33970173

ABSTRACT

A facile and effective strategy for the preparation of a series of ferricenium complexes bearing either electron-donating or electron-withdrawing substituents with weakly coordinating anions such as [B(C6F5)4]- or SbF6- is reported. These systems were thoroughly investigated for their ground state electronic structures in both solution and solid states using infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies as well as single crystal X-ray crystallography and electrochemical measurements. The X-ray structures of the six electron-deficient ferricenium derivatives are of particular interest as only a handful (∼5) of such derivatives have been structurally characterized to date. Comparison of the structural data for both neutral and oxidized derivatives reveals that the nature of the substituents on the cyclopentadienyl (Cp) ligands displays a more significant impact on the metal-ligand separations (FeCt) in the oxidized species than in their neutral analogs. Our 1H-NMR measurements corroborate that in the neutral ferrocene derivatives, electron-donating ring substitutions lead to a greater shielding of the ring protons while electron-withdrawing groups via induction deshield the nearby ring protons. However, the data for the paramagnetic ferricenium derivatives reveals that this substitutional behavior is more complex and fundamentally reversed, which is further supported by our structural studies. We ascribe this reversal of behavior in the ferricenium derivatives to the δ back-donation from the iron atom into the Cp rings which can lead to the overall shielding of the ring protons. Interestingly, our NMR results for the electron-deficient ferricenium derivatives in solution also indicate a direct correlation between the solvent dielectric constant and the energy barrier for rotation around the metal-ligand bond in these systems, whereas such a correlation is absent or not significant in the case of the electron-rich ferricenium species or the corresponding neutral ferrocene analogs. In this work, we also present the electrochemical behavior of the corresponding ferricenium/ferrocene redox couples including potential values (E1/2), peak-to-peak separation (ΔE1/2), and diffusion coefficients (D) of the redox active species in order to provide a concise outline of these data in one place. Our electrochemical studies involved three different solvents and two supporting electrolytes. Notably, our findings point to the significant effect of ion-pairing in lowering the energy necessary for reduction of the ferricenium ion and E1/2 in lower-polarity media. This has significant implications in applications of the ferrocene or ferricenium derivatives as redox agents in low-polarity solvents where an accurate determination of redox potential is critical.

9.
J Nat Prod ; 83(7): 2165-2177, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32597657

ABSTRACT

Two separate commercial products of kratom [Mitragyna speciosa (Korth.) Havil. Rubiaceae] were used to generate reference standards of its indole and oxindole alkaloids. While kratom has been studied for over a century, the characterization data in the literature for many of the alkaloids are either incomplete or inconsistent with modern standards. As such, full 1H and 13C NMR spectra, along with HRESIMS and ECD data, are reported for alkaloids 1-19. Of these, four new alkaloids (7, 11, 17, and 18) were characterized using 2D NMR data, and the absolute configurations of 7, 17, and 18 were established by comparison of experimental and calculated ECD spectra. The absolute configuration for the N(4)-oxide (11) was established by comparison of NMR and ECD spectra of its reduced product with those for compound 7. In total, 19 alkaloids were characterized, including the indole alkaloid mitragynine (1) and its diastereoisomers speciociliatine (2), speciogynine (3), and mitraciliatine (4); the indole alkaloid paynantheine (5) and its diastereoisomers isopaynantheine (6) and epiallo-isopaynantheine (7); the N(4)-oxides mitragynine-N(4)-oxide (8), speciociliatine-N(4)-oxide (9), isopaynantheine-N(4)-oxide (10), and epiallo-isopaynantheine-N(4)-oxide (11); the 9-hydroxylated oxindole alkaloids speciofoline (12), isorotundifoleine (13), and isospeciofoleine (14); and the 9-unsubstituted oxindoles corynoxine A (15), corynoxine B (16), 3-epirhynchophylline (17), 3-epicorynoxine B (18), and corynoxeine (19). With the ability to analyze the spectroscopic data of all of these compounds concomitantly, a decision tree was developed to differentiate these kratom alkaloids based on a few key chemical shifts in the 1H and/or 13C NMR spectra.


Subject(s)
Indole Alkaloids/chemistry , Mitragyna/chemistry , Molecular Structure , Spectrum Analysis/methods , Stereoisomerism
10.
J Am Chem Soc ; 139(38): 13276-13279, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28820592

ABSTRACT

A copper complex, [CuI(tmpa)(MeCN)]+, effectively reductively couples NO(g) at RT in methanol (MeOH), giving a structurally characterized hyponitrito-dicopper(II) adduct. Hydrogen-bonding from MeOH is critical for the hyponitrite complex formation and stabilization. This complex exhibits the reverse redox process in aprotic solvents, giving CuI + NO(g), leading to CuI-mediated NO(g)-disproportionation. The relationship of this chemistry to biological iron and/or copper mediated NO(g) reductive coupling to give N2O(g) is discussed.


Subject(s)
Copper/chemistry , Nitric Oxide/chemistry , Nitrites/chemistry , Iron/chemistry , Oxidation-Reduction , Solvents/chemistry
11.
J Am Chem Soc ; 137(40): 12897-905, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26419806

ABSTRACT

A synthetic heme-Cu CcO model complex shows selective and highly efficient electrocatalytic 4e(-)/4H(+) O2-reduction to H2O with a large catalytic rate (>10(5) M(-1) s(-1)). While the heme-Cu model (FeCu) shows almost exclusive 4e(-)/4H(+) reduction of O2 to H2O (detected using ring disk electrochemistry and rotating ring disk electrochemistry), when imidazole is bound to the heme (Fe(Im)Cu), this same selective O2-reduction to water occurs only under slow electron fluxes. Surface enhanced resonance Raman spectroscopy coupled to dynamic electrochemistry data suggests the formation of a bridging peroxide intermediate during O2-reduction by both complexes under steady state reaction conditions, indicating that O-O bond heterolysis is likely to be the rate-determining step (RDS) at the mass transfer limited region. The O-O vibrational frequencies at 819 cm(-1) in (16)O2 (759 cm(-1) in (18)O2) for the FeCu complex and at 847 cm(-1) (786 cm(-1)) for the Fe(Im)Cu complex, indicate the formation of side-on and end-on bridging Fe-peroxo-Cu intermediates, respectively, during O2-reduction in an aqueous environment. These data suggest that side-on bridging peroxide intermediates are involved in fast and selective O2-reduction in these synthetic complexes. The greater amount of H2O2 production by the imidazole bound complex under fast electron transfer is due to 1e(-)/1H(+) O2-reduction by the distal Cu where O2 binding to the water bound low spin Fe(II) complex is inhibited.


Subject(s)
Electron Transport Complex IV/chemistry , Molecular Mimicry , Oxygen/chemistry , Catalysis , Oxidation-Reduction
12.
Acc Chem Res ; 48(8): 2462-74, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26244814

ABSTRACT

Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving µ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox interplay between nitrite and NO(g). In the nitrite reductase chemistry, the cupric center serves as a Lewis acid, while the heme is the redox active center providing the electron. The orientation of nitrite in approaching the ferrous heme center and N-atom binding are important. Also, detailed spectroscopic and kinetic studies of the NO(g) oxidase chemistry, in excellent agreement with theoretical calculations, reveal the intermediates and key mechanistic steps. Thus, we suggest that both chemical and biochemical heme/Cu-mediated nitrite reductase and NO(g) oxidase chemistry require N-atom binding to a ferrous heme along with cupric ion O-atom coordination, proceeding via a three-membered O-Fe-N chelate ring transition state. These important mechanistic features of heme/Cu systems interconverting NO(g) and nitrite are discussed for the first time.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Electron Transport Complex IV/chemistry , Heme/chemistry , Nitrogen Oxides/chemistry , Oxygen/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Electron Transport Complex IV/metabolism , Kinetics , Mitochondria/metabolism , Molecular Conformation , Nitrogen Oxides/metabolism , Oxygen/metabolism , Quantum Theory , Thermodynamics
13.
J Am Chem Soc ; 137(20): 6602-15, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25974136

ABSTRACT

While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2(-)) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic µ-oxo heme-Fe(III)-O-Cu(II)(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of µ-oxo complexes have been determined and compared to literature analogs. All µ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete [(L)Cu(II)(NO2(-))](+) plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one µ-oxo heme-Fe(III)-O-Cu(II)(L) compound, the reaction with NO(g) reveals an intermediate species ("intermediate"), formally a bis-NO adduct, [(NO)(porphyrinate)Fe(II)-(NO2(-))-Cu(II)(L)](+) (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of [(L)Cu(II)(NO2(-))](+) and heme-Fe(II)(NO) to -125 °C leads to association and generation of the key 433 nm UV-vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the µ-oxo complex.


Subject(s)
Copper/chemistry , Ferric Compounds/chemistry , Nitrites/chemical synthesis , Nitrogen Oxides/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Models, Molecular , Molecular Conformation , Nitrites/chemistry , Oxidation-Reduction
14.
J Biol Inorg Chem ; 19(4-5): 515-28, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24430198

ABSTRACT

Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO2 (-)) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase binuclear heme a 3/CuB active site is one entity known to be responsible for conversion of cellular nitrite to nitric oxide. We recently reported that a partially reduced heme/copper assembly reduces nitrite ion, producing nitric oxide; the heme serves as the reductant and the cupric ion provides a Lewis acid interaction with nitrite, facilitating nitrite (N-O) bond cleavage (Hematian et al., J. Am. Chem. Soc. 134:18912-18915, 2012). To further investigate this nitrite reductase chemistry, copper(II)-nitrito complexes with tridentate and tetradentate ligands were used in this study, where either O,O'-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate-iron(II) complexes, one with electron-donating para-methoxy peripheral substituents and the other with electron-withdrawing 2,6-difluorophenyl substituents, were used. The results show that differing modes of nitrite coordination to the copper(II) ion lead to differing kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to convert nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. On the basis of our observations, reaction mechanisms are proposed and discussed in terms of heme/copper heterobinuclear structures.


Subject(s)
Copper/metabolism , Nitric Oxide/metabolism , Nitrite Reductases/chemistry , Nitrite Reductases/metabolism , Animals , Copper/chemistry , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Heme , Humans , Nitric Oxide/chemistry
15.
J Am Chem Soc ; 134(46): 18912-5, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23130610

ABSTRACT

The heme(a3)/Cu(B) active site of cytochrome c oxidase is responsible for cellular nitrite reduction to nitric oxide; the same center can return NO to the nitrite pool via oxidative chemistry. Here, we show that a partially reduced heme/Cu assembly reduces NO(2)(-) ion, producing nitric oxide. The heme serves as the reductant, but the Cu(II) ion is also required. In turn, a µ-oxo heme-Fe(III)-O-Cu(II) complex facilitates NO oxidation to nitrite; the final products are the reduced heme and Cu(II)-nitrito complexes.


Subject(s)
Copper/chemistry , Heme/chemistry , Nitric Oxide/chemistry , Nitrites/chemistry , Oxidation-Reduction , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...