Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28837, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617922

ABSTRACT

Dyslipidemia poses a significant risk to cardiovascular health in both diabetic and non-diabetic individuals. Therefore, it is crucial to normalize lipid homeostasis in order to prevent or minimize complications associated with dyslipidemia. However, pharmacological interventions for controlling lipid metabolism often come with adverse effects. As an alternative, utilizing herbal-based agents, which typically have fewer side effects, holds promise. Crocin, a naturally occurring nutraceutical, has been shown to impact various intracellular pathways, reduce oxidative stress, and alleviate inflammatory processes. Recent evidence suggests that crocin may also confer lipid-related benefits and potentially contribute to the normalization of lipid homeostasis. However, the specific advantages and the cellular pathways involved are not yet well understood. In this review, we present the latest findings regarding the lipid benefits of crocin, which could be instrumental in preventing or reducing disorders associated with dyslipidemia. Additionally, we explore the potential cellular mechanisms and pathways that mediate these lipid benefits.

2.
Behav Brain Res ; 460: 114830, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38141785

ABSTRACT

BACKGROUND: Diabetes-induced cognitive impairment is a major challenge in patients with uncontrolled diabetes mellitus. It has a complicated pathophysiology, but the role of oxidative stress is central. Therefore, the use of antidiabetic drugs with extra-glycemic effects that reduce oxidative damage may be a promising treatment option. METHODS: Male Wistar rats were randomly divided into four groups as normal, normal treated, diabetic and diabetic treated (n = 8 per group). Type 1 diabetes was induced by a single intraperitoneal dose of streptozotocin (STZ) (40 mg/kg). Two treatment groups received empagliflozin for 5 weeks (20 mg/kg/po). Cognitive ability was evaluated using open field, Elevated Plus Maze (EPM) and the Morris Water Maze (MWM) tests at study completion. Blood and brain tissue samples were collected - and analysis for malondialdehyde (MDA) and glutathione (GLT) content and catalase (CAT) and superoxide dismutase (SOD) enzyme activity were performed. Additionally, expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox-4) enzyme in brain tissue was analyzed using RT-PCR. RESULTS: STZ increased blood glucose and induced diabetes with oxidative stress by lowering the antioxidant system potency and increasing Nox-4 expression after 5-weeks in brain tissue accompanied by reduction in cognitive performance. Also, diabetes induced anxiety-like behavior and impaired spatial memory in MWM, EPM and open field tests. However, empagliflozin reversed these changes, improving SOD and CAT activity, GLT content and reducing Nox-4 expression and MDA concentration in brain tissue while improving cognitive ability. It reduced anxiety and depression-related activities. It also improved spatial memory in MWM test. CONCLUSION: Uncontrolled diabetes negatively impacts mental function and impairs learning and cognitive performance via oxidative stress induction, the Nox-4 enzyme playing a central role. Empagliflozin reverses these effects, improving cognitive ability via promoting the anti-oxidative system and damping Nox-4 free radical generator enzyme expression. Therefore, empagliflozin is a promising treatment, providing both antidiabetic and extra-glycemic benefits for improving brain function in the diabetic milieu.


Subject(s)
Benzhydryl Compounds , Cognitive Dysfunction , Diabetes Mellitus, Experimental , Glucosides , Animals , Male , Rats , Antioxidants/metabolism , Brain/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glutathione/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , NADP/metabolism , Oxidative Stress , Rats, Wistar , Superoxide Dismutase/metabolism
3.
J Clin Med ; 12(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298010

ABSTRACT

INTRODUCTION: There are several pathologic mechanisms involved in diabetic nephropathy, but the role of oxidative stress seems to be one of the most important. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs that might also have some other effects in addition to lowering glucose. The aim of this study was to evaluate the possible effects of the SGLT2 inhibitor empagliflozin on oxidative stress and renal function in diabetes. METHODS: Male Wistar rats were randomly divided into four groups: control, control-treated, diabetic, and diabetic-treated (n = 8 per group). Diabetes was induced by a single intraperitoneal dose of streptozotocin (50 mg/kg). The treated animals received empagliflozin for 5 weeks (20 mg/kg/day/po). All groups were sacrificed on the 36th day, and blood and tissue samples were collected. Serum levels of urea, uric acid, creatinine, and glucose levels were determined. The level of malondialdehyde (MDA) and glutathione (GLT), as well as the activity of catalase (CAT) and superoxide dismutase (SOD), was measured in all groups. Data were analyzed using one-way Anova and paired T-tests, and p ≤ 0.05 was considered significant. RESULTS: Diabetes significantly increased urea (p < 0.001), uric acid (p < 0.001), and creatinine (p < 0.001) in the serum, while the activities of CAT (p < 0.001) and SOD (p < 0.001) were reduced. GLT was also reduced (p < 0.001), and MDA was increased (p < 0.001) in non-treated animals. Treatment with empagliflozin improved renal function, as shown by a reduction in the serum levels of urea (p = 0.03), uric acid (p = 0.03), and creatinine (p < 0.001). Empagliflozin also increased the antioxidant capacity by increasing CAT (p = 0.035) and SOD (p = 0.02) activities and GLT content (p = 0.01) and reduced oxidative damage by lowering MDA (p < 0.001). CONCLUSIONS: It seems that uncontrolled diabetes induces renal insufficiency by decreasing antioxidant defense mechanisms and inducing oxidative stress. Empagliflozin might have additional benefits in addition to lowering glucose--reversing these processes, improving antioxidative capacity, and improving renal function.

SELECTION OF CITATIONS
SEARCH DETAIL
...