Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1150353, 2023.
Article in English | MEDLINE | ID: mdl-36992929

ABSTRACT

The recent discovery of the archaeal modified mevalonate pathway revealed that the fundamental units for isoprenoid biosynthesis (isopentenyl diphosphate and dimethylallyl diphosphate) are biosynthesized via a specific intermediate, trans-anhydromevalonate phosphate. In this biosynthetic pathway, which is unique to archaea, the formation of trans-anhydromevalonate phosphate from (R)-mevalonate 5-phosphate is catalyzed by a key enzyme, phosphomevalonate dehydratase. This archaea-specific enzyme belongs to the aconitase X family within the aconitase superfamily, along with bacterial homologs involved in hydroxyproline metabolism. Although an iron-sulfur cluster is thought to exist in phosphomevalonate dehydratase and is believed to be responsible for the catalytic mechanism of the enzyme, the structure and role of this cluster have not been well characterized. Here, we reconstructed the iron-sulfur cluster of phosphomevalonate dehydratase from the hyperthermophilic archaeon Aeropyrum pernix to perform biochemical characterization and kinetic analysis of the enzyme. Electron paramagnetic resonance, iron quantification, and mutagenic studies of the enzyme demonstrated that three conserved cysteine residues coordinate a [4Fe-4S] cluster-as is typical in aconitase superfamily hydratases/dehydratases, in contrast to bacterial aconitase X-family enzymes, which have been reported to harbor a [2Fe-2S] cluster.

2.
FEBS J ; 290(11): 2895-2908, 2023 06.
Article in English | MEDLINE | ID: mdl-36695650

ABSTRACT

Various d-amino acids have been found in a wide range of organisms, including mammals. Although the physiological functions of various d-amino acids have been reported or suggested, the molecular basis of these biological functions has been elucidated in only a few cases. The identification of a d-amino acid biosynthetic enzyme is a critical step in understanding the mechanism of the physiological functions of d-amino acids. While in vivo functional screening can be a powerful tool for identifying novel metabolic enzymes, none of the existing organisms exhibit growth dependent on d-amino acid other than d-Ala and d-Glu. Here, we report the first organism that exhibits non-canonical d-amino acid auxotrophy. We found that an Escherichia coli strain lacking the major d-Ala and d-Glu biosynthetic enzymes, alr, dadX, and murI, and expressing the mutated d-amino acid transaminase (DAAT) gene from Bacillus sp. YM-1 (MB3000/mdaat+ ) grew well when supplemented with certain d-amino acid. A multicopy suppression study with plasmids encoding one of the 51 PLP-dependent enzymes of E. coli showed that MB3000/mdaat+ could detect weak and moonlighting racemase activity, such from cystathionine ß-lyase (MetC) and a negative regulator of MalT activity/cystathionine ß-lyase (MalY)-these exhibit only a few tenths to a few thousandths of the racemization activity of canonical amino acid racemases. We believe that this unique platform will contribute to further research in this field by identifying novel d-amino acid-metabolizing enzymes.


Subject(s)
Amino Acid Isomerases , Amino Acids , Amino Acids/genetics , Amino Acids/metabolism , Escherichia coli/metabolism , Amino Acid Isomerases/genetics , Racemases and Epimerases/metabolism , Cloning, Molecular
3.
J Biol Chem ; 298(7): 102111, 2022 07.
Article in English | MEDLINE | ID: mdl-35690147

ABSTRACT

Mevalonate 3,5-bisphosphate decarboxylase is involved in the recently discovered Thermoplasma-type mevalonate pathway. The enzyme catalyzes the elimination of the 3-phosphate group from mevalonate 3,5-bisphosphate as well as concomitant decarboxylation of the substrate. This entire reaction of the enzyme resembles the latter half-reactions of its homologs, diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, which also catalyze ATP-dependent phosphorylation of the 3-hydroxyl group of their substrates. However, the crystal structure of mevalonate 3,5-bisphosphate decarboxylase and the structural reasons of the difference between reactions catalyzed by the enzyme and its homologs are unknown. In this study, we determined the X-ray crystal structure of mevalonate 3,5-bisphosphate decarboxylase from Picrophilus torridus, a thermoacidophilic archaeon of the order Thermoplasmatales. Structural and mutational analysis demonstrated the importance of a conserved aspartate residue for enzyme activity. In addition, although crystallization was performed in the absence of substrate or ligands, residual electron density having the shape of a fatty acid was observed at a position overlapping the ATP-binding site of the homologous enzyme, diphosphomevalonate decarboxylase. This finding is in agreement with the expected evolutionary route from phosphomevalonate decarboxylase (ATP-dependent) to mevalonate 3,5-bisphosphate decarboxylase (ATP-independent) through the loss of kinase activity. We found that the binding of geranylgeranyl diphosphate, an intermediate of the archeal isoprenoid biosynthesis pathway, evoked significant activation of mevalonate 3,5-bisphosphate decarboxylase, and several mutations at the putative geranylgeranyl diphosphate-binding site impaired this activation, suggesting the physiological importance of ligand binding as well as a possible novel regulatory system employed by the Thermoplasma-type mevalonate pathway.


Subject(s)
Carboxy-Lyases/chemistry , Thermoplasmales/enzymology , Adenosine Triphosphate/metabolism , Carboxy-Lyases/metabolism , Metabolic Networks and Pathways , Mevalonic Acid/metabolism
4.
J Biochem ; 172(1): 17-28, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35325141

ABSTRACT

The pupae of lepidopterans contain high concentrations of endogenous d-serine. In the silkworm Bombyx mori, d-serine is negligible during the larval stage but increases markedly during the pupal stage, reaching 50% of the total free serine. However, the physiological function of d-serine and the enzyme responsible for its production is unknown. Herein, we identified a new type of pyridoxal 5'-phosphate (PLP)-dependent serine racemase (SR) that catalyses the racemization of l-serine to d-serine in B. mori. This silkworm SR (BmSR) has an N-terminal PLP-binding domain that is homologous to mammalian SR and a C-terminal putative ligand-binding regulatory-like domain (ACT-like domain) that is absent in mammalian SR. Similar to mammalian SRs, BmSR catalyses the racemization and dehydration of both serine isomers. However, BmSR is different from mammalian SRs as evidenced by its insensitivity to Mg2+/Ca2+ and Mg-ATP-which are required for activation of mammalian SRs-and high d-serine dehydration activity. At the pupal stage, the SR activity was predominantly detected in the fat body, which was consistent with the timing and localization of BmSR expression. The results are an important first step in elucidating the physiological significance of d-serine in lepidopterans.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Bombyx/metabolism , Dehydration , Mammals , Pupa , Pyridoxal Phosphate/metabolism , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Serine/metabolism
5.
FEBS J ; 289(16): 4981-4997, 2022 08.
Article in English | MEDLINE | ID: mdl-35202511

ABSTRACT

Isoprenoids with reduced Z,E-mixed prenyl groups are found in various organisms. To date, only polyprenol reductases (PR-Dol) involved in dolichol biosynthesis have been identified as enzymes capable of reducing Z,E-mixed prenyl groups. Although C35 -isoprenoids with reduced Z,E-mixed prenyl groups are found in mycobacteria, Z,E-mixed heptaprenyl reductase (HepR) remains unidentified. In the present study, the identification and functional analysis of HepR was performed. No PR-Dol homolog gene was detected in the genome of Mycolicibacterium vanbaalenii. However, a homolog of geranylgeranyl reductase (GGR), which reacts with an all-E prenyl group as a substrate, was encoded in the genome; thus, we analyzed it as a HepR candidate. In vitro enzymatic assay and in vivo gene suppression analysis identified the GGR homolog as HepR and revealed that HepR catalyzes the reduction of ω- and E- prenyl units in Z,E-mixed heptaprenyl diphosphates, and C35 -isoprenoids are mainly biosynthesized using E,E,E-geranylgeranyl diphosphate as a precursor. Thus, it was demonstrated that the Z,E-mixed prenyl reductase family exists in the GGR homologs. To the best of our knowledge, this is the first identification of a new type of Z,E-mixed prenyl reductase with no sequence homology to PR-Dol. The substrate specificity of HepR significantly differed from that of GGR, suggesting that it is a new enzyme. HepR homologs are widely distributed in mycobacterial genomes, and lipid analysis suggests that many strains, including pathogenic species, produce HepR metabolites. The discovery of this new enzyme will promote further research on Z,E-mixed isoprenoids.


Subject(s)
Alkyl and Aryl Transferases , Mycobacterium , Mycobacterium/genetics , Neoprene , Oxidoreductases/genetics , Terpenes
6.
J Biochem ; 171(6): 641-651, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35195245

ABSTRACT

cis-Prenyltransferases (cPTs) form linear polyprenyl pyrophosphates, the precursors of polyprenyl or dolichyl phosphates that are essential for cell function in all living organisms. Polyprenyl phosphate serves as a sugar carrier for peptidoglycan cell wall synthesis in bacteria, a role that dolichyl phosphate performs analogously for protein glycosylation in eukaryotes and archaea. Bacterial cPTs are characterized by their homodimeric structure, while cPTs from eukaryotes usually require two distantly homologous subunits for enzymatic activity. This study identifies the subunits of heteromeric cPT, Af1219 and Af0707, from a thermophilic sulphur-reducing archaeon, Archaeoglobus fulgidus. Both subunits are indispensable for cPT activity, and their protein-protein interactions were demonstrated by a pulldown assay. Gel filtration chromatography and chemical cross-linking experiments suggest that Af1219 and Af0707 likely form a heterotetramer complex. Although this expected subunit composition agrees with a reported heterotetrameric structure of human hCIT/NgBR cPT complex, the similarity of the quaternary structures is likely a result of convergent evolution.


Subject(s)
Archaea , Archaeoglobus fulgidus , Archaea/metabolism , Archaeoglobus fulgidus/metabolism , Humans , Transferases/chemistry , Transferases/metabolism
7.
J Bacteriol ; 204(3): e0052121, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34978460

ABSTRACT

The pyridoxal 5'-phosphate (PLP)-binding protein (PLPBP) plays an important role in vitamin B6 homeostasis. Loss of this protein in organisms such as Escherichia coli and humans disrupts the vitamin B6 pool and induces intracellular accumulation of pyridoxine 5'-phosphate (PNP), which is normally undetectable in wild-type cells. This accumulated PNP could affect diverse metabolic systems through the inhibition of some PLP-dependent enzymes. In this study, we investigated the as-yet-unclear mechanism of intracellular accumulation of PNP due to the loss of PLPBP protein encoded by yggS in E. coli. Genetic studies using several PLPBP-deficient strains of E. coli lacking a known enzyme(s) in the de novo or salvage pathways of vitamin B6, including pyridoxine (amine) 5'-phosphate oxidase (PNPO), PNP synthase, pyridoxal kinase, and pyridoxal reductase, demonstrated that neither the flux from the de novo pathway nor the salvage pathway solely contributed to the PNP accumulation caused by the PLPBP mutation. Studies of the strains lacking both PLPBP and PNPO suggested that PNP shares the same pool with PMP, and showed that PNP levels are impacted by PMP levels and vice versa. Here, we show that disruption of PLPBP perturbs PMP homeostasis, which may result in PNP accumulation in the PLPBP-deficient strains. IMPORTANCE A PLP-binding protein (PLPBP) from the conserved COG0325 family has recently been recognized as a key player in vitamin B6 homeostasis in various organisms. Loss of PLPBP disrupts vitamin B6 homeostasis and perturbs diverse metabolisms, including amino acid and α-keto acid metabolism. Accumulation of PNP is a characteristic phenotype of PLPBP deficiency and is suggested to be a potential cause of the pleiotropic effects, but the mechanism of this accumulation has been poorly understood. In this study, we show that fluxes for PNP synthesis/metabolism are not responsible for the accumulation of PNP. Our results indicate that PLPBP is involved in the homeostasis of pyridoxamine 5'-phosphate, and that its disruption may lead to the accumulation of PNP in PLPBP deficiency.


Subject(s)
Escherichia coli Proteins , Pyridoxine , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Oxidoreductases/metabolism , Phosphate-Binding Proteins/metabolism , Phosphates/metabolism , Pyridoxal Phosphate/metabolism , Pyridoxine/metabolism , Vitamin B 6/metabolism , Vitamins/metabolism
8.
J Biochem ; 171(4): 421-428, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-34967408

ABSTRACT

Alanine racemase (EC 5.1.1.1) depends on pyridoxal 5'-phosphate and catalyses the interconversion between L- and D-Ala. The enzyme is responsible for the biosynthesis of D-Ala, which is an essential component of the peptidoglycan layer of bacterial cell walls. Phylogenetic analysis of alanine racemases demonstrated that the cyanobacterial enzyme diverged before the separation of gram-positive and gram-negative enzymes. This result is interesting considering that the peptidoglycans observed in cyanobacteria seem to combine the properties of those in both gram-negative and gram-positive bacteria. We cloned the putative alanine racemase gene (slr0823) of Synechocystis sp. PCC6803 in Escherichia coli cells, expressed and purified the enzyme protein and studied its enzymological properties. The enzymatic properties of the Synechocystis enzyme were similar to those of other gram-positive and gram-negative bacterial enzymes. Alignment of the amino acid sequences of alanine racemase enzymes revealed that the conserved tyrosine residue in the active centre of most of the gram-positive and gram-negative bacterial enzymes has been replaced with tryptophan in most of the cyanobacterial enzymes. We carried out the site-directed mutagenesis involving the corresponding residue of Synechocystis enzyme (W385) and revealed that the residue is involved in the substrate recognition by the enzyme.


Subject(s)
Alanine Racemase , Synechocystis , Alanine/genetics , Alanine Racemase/chemistry , Alanine Racemase/genetics , Alanine Racemase/metabolism , Amino Acid Sequence , Mutagenesis, Site-Directed , Phylogeny , Synechocystis/genetics , Synechocystis/metabolism
9.
Biosci Biotechnol Biochem ; 86(2): 246-253, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34864834

ABSTRACT

Nudix hydrolases typically catalyze the hydrolysis of nucleoside diphosphate linked to moiety X and yield nucleoside monophosphate and X-phosphate, while some of them hydrolyze a terminal diphosphate group of non-nucleosidic compounds and convert it into a phosphate group. Although the number of Nudix hydrolases is usually limited in archaea comparing with those in bacteria and eukaryotes, the physiological functions of most archaeal Nudix hydrolases remain unknown. In this study, a Nudix hydrolase family protein, MM_2582, from the methanogenic archaeon Methanosarcina mazei was recombinantly expressed in Escherichia coli, purified, and characterized. This recombinant protein shows higher hydrolase activity toward isopentenyl diphosphate and short-chain prenyl diphosphates than that toward nucleosidic compounds. Kinetic studies demonstrated that the archaeal enzyme prefers isopentenyl diphosphate and dimethylallyl diphosphate, which suggests its role in the biosynthesis of prenylated flavin mononucleotide, a recently discovered coenzyme that is required, for example, in the archaea-specific modified mevalonate pathway.


Subject(s)
Methanosarcina
10.
J Nat Prod ; 84(10): 2749-2754, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34597517

ABSTRACT

The mevalonate pathway is an upstream terpenoid biosynthetic route of terpenoids for providing the two five-carbon units, dimethylallyl diphosphate, and isopentenyl diphosphate. Recently, trans-anhydromevalonate-5-phosphate (tAHMP) was isolated as a new biosynthetic intermediate of the archaeal mevalonate pathway. In this study, we would like to report the first synthesis of tAHMP and its enzymatic transformation using one of the key enzymes, mevalonate-5-phosphate dehydratase from a hyperthermophilic archaeon, Aeropyrum pernix. Starting from methyl tetrolate, a Cu-catalyzed allylation provided an E-trisubstituted olefin in a stereoselective manner. The resulting E-olefin was transformed to tAHMP by cleavage of the olefin and phosphorylation. The structure of the synthetic tAHMP was unambiguously determined by NOESY analysis.


Subject(s)
Aeropyrum/chemistry , Mevalonic Acid/chemistry , Organophosphates/chemistry , Terpenes/chemistry , Aeropyrum/enzymology , Hemiterpenes , Hydro-Lyases/metabolism , Mevalonic Acid/analogs & derivatives , Molecular Structure , Organophosphorus Compounds
11.
J Biol Chem ; 296: 100679, 2021.
Article in English | MEDLINE | ID: mdl-33872599

ABSTRACT

Polyprenyl groups, products of isoprenoid metabolism, are utilized in peptidoglycan biosynthesis, protein N-glycosylation, and other processes. These groups are formed by cis-prenyltransferases, which use allylic prenyl pyrophosphates as prenyl-donors to catalyze the C-prenylation of the general acceptor substrate, isopentenyl pyrophosphate. Repetition of this reaction forms (Z,E-mixed)-polyprenyl pyrophosphates, which are converted later into glycosyl carrier lipids, such as undecaprenyl phosphate and dolichyl phosphate. MM_0014 from the methanogenic archaeon Methanosarcina mazei is known as a versatile cis-prenyltransferase that accepts both isopentenyl pyrophosphate and dimethylallyl pyrophosphate as acceptor substrates. To learn more about this enzyme's catalytic activity, we determined the X-ray crystal structures of MM_0014 in the presence or absence of these substrates. Surprisingly, one structure revealed a complex with O-prenylglycerol, suggesting that the enzyme catalyzed the prenylation of glycerol contained in the crystallization buffer. Further analyses confirmed that the enzyme could catalyze the O-prenylation of small alcohols, such as 2-propanol, expanding our understanding of the catalytic ability of cis-prenyltransferases.


Subject(s)
Biocatalysis , Methanosarcina/enzymology , Prenylation , Transferases/metabolism , 2-Propanol/metabolism , Kinetics , Models, Molecular , Protein Conformation , Transferases/chemistry
12.
Biosci Rep ; 41(4)2021 04 30.
Article in English | MEDLINE | ID: mdl-33821987

ABSTRACT

In the present study, we identified l-erythro-ß-hydroxyasparagine (l-ß-EHAsn) found abundantly in human urine, as a novel substrate of Zn2+-dependent d-serine dehydratase (DSD). l-ß-EHAsn is an atypical amino acid present in large amounts in urine but rarely detected in serum or most organs/tissues examined. Quantitative analyses of urinary l-ß-EHAsn in young healthy volunteers revealed significant correlation between urinary l-ß-EHAsn concentration and creatinine level. Further, for in-depth analyses of l-ß-EHAsn, we developed a simple three-step synthetic method using trans-epoxysuccinic acid as the starting substance. In addition, our research revealed a strong inhibitory effect of l-ß-EHAsn on mammalian serine racemase, responsible for producing d-serine, a co-agonist of the N-methyl-d-aspartate (NMDA) receptor involved in glutamatergic neurotransmission.


Subject(s)
Asparagine/analogs & derivatives , Enzyme Inhibitors/pharmacology , L-Serine Dehydratase/metabolism , Racemases and Epimerases/antagonists & inhibitors , Urine/chemistry , Animals , Asparagine/chemistry , Asparagine/pharmacology , Asparagine/urine , Humans , Male , Rats , Rats, Sprague-Dawley , Succinates/chemistry
13.
Synth Biol (Oxf) ; 5(1): ysaa018, 2020.
Article in English | MEDLINE | ID: mdl-33263085

ABSTRACT

Archaea produce unique membrane lipids, which possess two fully saturated isoprenoid chains linked to the glycerol moiety via ether bonds. The isoprenoid chain length of archaeal membrane lipids is believed to be important for some archaea to thrive in extreme environments because the hyperthermophilic archaeon Aeropyrum pernix and some halophilic archaea synthesize extended C25,C25-archaeal diether-type membrane lipids, which have isoprenoid chains that are longer than those of typical C20,C20-diether lipids. Natural archaeal diether lipids possessing longer C30 or C35 isoprenoid chains, however, have yet to be isolated. In the present study, we attempted to synthesize such hyperextended archaeal membrane lipids. We investigated the substrate preference of the enzyme sn-2,3-(digeranylfarnesyl)glycerol-1-phosphate synthase from A. pernix, which catalyzes the transfer of the second C25 isoprenoid chain to the glycerol moiety in the biosynthetic pathway of C25,C25-archaeal membrane lipids. The enzyme was shown to accept sn-3-hexaprenylglycerol-1-phosphate, which has a C30 isoprenoid chain, as a prenyl acceptor substrate to synthesize sn-2-geranylfarnesyl-3-hexaprenylglycerol-1-phosphate, a supposed precursor for hyperextended C25,C30-archaeal membrane lipids. Furthermore, we constructed an artificial biosynthetic pathway by introducing 4 archaeal genes and 1 gene from Bacillus subtilis in the cells of Escherichia coli, which enabled the E. coli strain to produce hyperextended C25,C30-archaeal membrane lipids, which have never been reported so far.

14.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140460, 2020 09.
Article in English | MEDLINE | ID: mdl-32474107

ABSTRACT

Eukaryotic serine racemase (SR) is a pyridoxal 5'-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-d-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.


Subject(s)
Dehydration , Eukaryota/enzymology , Racemases and Epimerases/chemistry , Racemases and Epimerases/metabolism , Serine/metabolism , Animals , Catalysis , Crystallization , Dictyostelium/enzymology , Kinetics , Mice , Models, Molecular , Racemases and Epimerases/genetics , Receptors, N-Methyl-D-Aspartate , Substrate Specificity
15.
Appl Environ Microbiol ; 86(6)2020 03 02.
Article in English | MEDLINE | ID: mdl-31924615

ABSTRACT

The mevalonate pathway is a well-known metabolic route that provides biosynthetic precursors for myriad isoprenoids. An unexpected variety of the pathway has been discovered from recent studies on microorganisms, mainly on archaea. The most recently discovered example, called the "archaeal" mevalonate pathway, is a modified version of the canonical eukaryotic mevalonate pathway and was elucidated in our previous study using the hyperthermophilic archaeon Aeropyrum pernix This pathway comprises four known enzymes that can produce mevalonate 5-phosphate from acetyl coenzyme A, two recently discovered enzymes designated phosphomevalonate dehydratase and anhydromevalonate phosphate decarboxylase, and two more known enzymes, i.e., isopentenyl phosphate kinase and isopentenyl pyrophosphate:dimethylallyl pyrophosphate isomerase. To show its wide distribution in archaea and to confirm if its enzyme configuration is identical among species, the putative genes of a lower portion of the pathway-from mevalonate to isopentenyl pyrophosphate-were isolated from the methanogenic archaeon Methanosarcina mazei, which is taxonomically distant from A. pernix, and were introduced into an engineered Escherichia coli strain that produces lycopene, a red carotenoid pigment. Lycopene production, as a measure of isoprenoid productivity, was enhanced when the cells were grown semianaerobically with the supplementation of mevalonolactone, which demonstrates that the archaeal pathway can function in bacterial cells to convert mevalonate into isopentenyl pyrophosphate. Gene deletion and complementation analysis using the carotenogenic E. coli strain suggests that both phosphomevalonate dehydratase and anhydromevalonate phosphate decarboxylase from M. mazei are required for the enhancement of lycopene production.IMPORTANCE Two enzymes that have recently been identified from the hyperthermophilic archaeon A. pernix as components of the archaeal mevalonate pathway do not require ATP for their reactions. This pathway, therefore, might consume less energy than other mevalonate pathways to produce precursors for isoprenoids. Thus, the pathway might be applicable to metabolic engineering and production of valuable isoprenoids that have application as pharmaceuticals. The archaeal mevalonate pathway was successfully reconstructed in E. coli cells by introducing several genes from the methanogenic or hyperthermophilic archaeon, which demonstrated that the pathway requires the same components even in distantly related archaeal species and can function in bacterial cells.


Subject(s)
Escherichia coli/metabolism , Methanosarcina/metabolism , Mevalonic Acid/metabolism , Escherichia coli/genetics , Metabolic Networks and Pathways , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism
16.
Mol Microbiol ; 113(1): 270-284, 2020 01.
Article in English | MEDLINE | ID: mdl-31677193

ABSTRACT

The YggS/Ybl036c/PLPBP family includes conserved pyridoxal 5'-phosphate (PLP)-binding proteins that play a critical role in the homeostasis of vitamin B6 and amino acids. Disruption of members of this family causes pleiotropic effects in many organisms by unknown mechanisms. In Escherichia coli, conditional lethality of the yggS and glyA (encoding serine hydroxymethyltransferase) has been described, but the mechanism of lethality was not determined. Strains lacking yggS and serA (3-phosphoglycerate dehydrogenase) were conditionally lethality in the M9-glucose medium supplemented with Gly. Analyses of vitamin B6 pools found the high-levels of pyridoxine 5'-phosphate (PNP) in the two yggS mutants. Growth defects of the double mutants could be eliminated by overexpressing PNP/PMP oxidase (PdxH) to decrease the PNP levels. Further, a serA pdxH strain, which accumulates PNP in the presence of yggS, exhibited similar phenotype to serA yggS mutant. Together these data suggested the inhibition of the glycine cleavage (GCV) system caused the synthetic lethality. Biochemical assays confirmed that PNP disrupts the GCV system by competing with PLP in GcvP protein. Our data are consistent with a model in which PNP-dependent inhibition of the GCV system causes the conditional lethality observed in the glyA yggS or serA yggS mutants.


Subject(s)
Amino Acid Oxidoreductases/genetics , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Multienzyme Complexes/genetics , Pyridoxal Phosphate/analogs & derivatives , Transferases/genetics , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Pyridoxal Phosphate/metabolism , Synthetic Lethal Mutations
17.
Biochem Biophys Res Commun ; 520(2): 291-296, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31594637

ABSTRACT

Cis-prenyltransferases are enzymes responsible for the biosynthesis of glycosyl carrier lipids, natural rubber, and some secondary metabolites. Certain organisms, including some archaeal species, possess multiple genes encoding cis-prenyltransferase homologs, and the physiological roles of these seemingly-redundant genes are often obscure. Cis-prenyltransferases usually form homomeric complexes, but recent reports have demonstrated that certain eukaryotic enzymes are heteromeric protein complexes consisting of two homologous subunits. In this study, three cis-prenyltransferase homolog proteins, MM_0014, MM_0618, and MM_1083, from the methanogenic archaeon Methanosarcina mazei are overexpressed in Escherichia coli and partially purified for functional characterization. Coexistence of MM_0618 and MM_1083 exhibits prenyltransferase activity, while each of them alone has almost no activity. The chain-lengths of the products of this heteromeric enzyme are in good agreement with those of glycosyl carrier lipids extracted from M. mazei, which are likely di- and tetra-hydrogenated decaprenyl phosphates, suggesting that the MM_0618/MM_1083 heteromer is involved in glycosyl carrier lipid biosynthesis. MM_0014 acts as a typical homomeric cis-prenyltransferase and produces shorter products.


Subject(s)
Archaeal Proteins/metabolism , Lipids/biosynthesis , Methanosarcina/metabolism , Transferases/metabolism , Archaeal Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Lipids/chemistry , Methanosarcina/genetics , Phylogeny , Transferases/genetics
18.
Appl Environ Microbiol ; 85(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30824437

ABSTRACT

Mevalonate 3-kinase plays a key role in a recently discovered modified mevalonate pathway specific to thermophilic archaea of the order Thermoplasmatales The enzyme is homologous to diphosphomevalonate decarboxylase, which is involved in the widely distributed classical mevalonate pathway, and to phosphomevalonate decarboxylase, which is possessed by halophilic archaea and some Chloroflexi bacteria. Mevalonate 3-kinase catalyzes the ATP-dependent 3-phosphorylation of mevalonate but does not catalyze the subsequent decarboxylation as related decarboxylases do. In this study, a substrate-interacting glutamate residue of Thermoplasma acidophilum mevalonate 3-kinase was replaced by smaller amino acids, including its counterparts in diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, with the aim of altering substrate specificity. These single amino acid mutations resulted in the conversion of mevalonate 3-kinase into 5-phosphomevalonate 3-kinase, which can synthesize 3,5-bisphosphomevalonate from 5-phosphomevalonate. The mutants catalyzing the hitherto undiscovered reaction enabled the construction of an artificial mevalonate pathway in Escherichia coli cells, as was demonstrated by the accumulation of lycopene, a red carotenoid pigment.IMPORTANCE Isoprenoid is the largest family of natural compounds, including important bioactive molecules such as vitamins, hormones, and natural medicines. The mevalonate pathway is a target for metabolic engineering because it supplies precursors for isoprenoid biosynthesis. Mevalonate 3-kinase is an enzyme involved in the modified mevalonate pathway specific to limited species of thermophilic archaea. Replacement of a single amino acid residue in the active site of the enzyme changed its substrate preference and allowed the mutant enzymes to catalyze a previously undiscovered reaction. Using the genes encoding the mutant enzymes and other archaeal enzymes, we constructed an artificial mevalonate pathway, which can produce the precursor of isoprenoid through an unexplored route, in bacterial cells.


Subject(s)
Amino Acids/chemistry , Archaeal Proteins/genetics , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/genetics , Thermoplasma/genetics , Archaeal Proteins/metabolism , Catalytic Domain , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Substrate Specificity , Thermoplasma/enzymology
19.
Appl Environ Microbiol ; 85(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30902856

ABSTRACT

Escherichia coli YggS (COG0325) is a member of the highly conserved pyridoxal 5'-phosphate (PLP)-binding protein (PLPBP) family. Recent studies suggested a role for this protein family in the homeostasis of vitamin B6 and amino acids. The deletion or mutation of a member of this protein family causes pleiotropic effects in many organisms and is causative of vitamin B6-dependent epilepsy in humans. To date, little has been known about the mechanism by which lack of YggS results in these diverse phenotypes. In this study, we determined that the pyridoxine (PN) sensitivity observed in yggS-deficient E. coli was caused by the pyridoxine 5'-phosphate (PNP)-dependent overproduction of Val, which is toxic to E. coli The data suggest that the yggS mutation impacts Val accumulation by perturbing the biosynthetic of Thr from homoserine (Hse). Exogenous Hse inhibited the growth of the yggS mutant, caused further accumulation of PNP, and increased the levels of some intermediates in the Thr-Ile-Val metabolic pathways. Blocking the Thr biosynthetic pathway or decreasing the intracellular PNP levels abolished the perturbations of amino acid metabolism caused by the exogenous PN and Hse. Our data showed that a high concentration of intracellular PNP is the root cause of at least some of the pleiotropic phenotypes described for a yggS mutant of E. coliIMPORTANCE Recent studies showed that deletion or mutation of members of the YggS protein family causes pleiotropic effects in many organisms. Little is known about the causes, mechanisms, and consequences of these diverse phenotypes. It was previously shown that yggS mutations in E. coli result in the accumulation of PNP and some metabolites in the Ile/Val biosynthetic pathway. This work revealed that some exogenous stresses increase the aberrant accumulation of PNP in the yggS mutant. In addition, the current report provides evidence indicating that some, but not all, of the phenotypes of the yggS mutant in E. coli are due to the elevated PNP level. These results will contribute to continuing efforts to determine the molecular functions of the members of the YggS protein family.


Subject(s)
Amino Acids/biosynthesis , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Pyridoxal Phosphate/analogs & derivatives , Biosynthetic Pathways/genetics , Carrier Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Knockout Techniques , Metabolic Networks and Pathways/genetics , Mutation , Pyridoxal Phosphate/metabolism , Pyridoxine/pharmacology , Transcriptome , Vitamin B 6/metabolism
20.
Proc Natl Acad Sci U S A ; 115(40): 10034-10039, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224495

ABSTRACT

The modified mevalonate pathway is believed to be the upstream biosynthetic route for isoprenoids in general archaea. The partially identified pathway has been proposed to explain a mystery surrounding the lack of phosphomevalonate kinase and diphosphomevalonate decarboxylase by the discovery of a conserved enzyme, isopentenyl phosphate kinase. Phosphomevalonate decarboxylase was considered to be the missing link that would fill the vacancy in the pathway between mevalonate 5-phosphate and isopentenyl phosphate. This enzyme was recently discovered from haloarchaea and certain Chroloflexi bacteria, but their enzymes are close homologs of diphosphomevalonate decarboxylase, which are absent in most archaea. In this study, we used comparative genomic analysis to find two enzymes from a hyperthermophilic archaeon, Aeropyrum pernix, that can replace phosphomevalonate decarboxylase. One enzyme, which has been annotated as putative aconitase, catalyzes the dehydration of mevalonate 5-phosphate to form a previously unknown intermediate, trans-anhydromevalonate 5-phosphate. Then, another enzyme belonging to the UbiD-decarboxylase family, which likely requires a UbiX-like partner, converts the intermediate into isopentenyl phosphate. Their activities were confirmed by in vitro assay with recombinant enzymes and were also detected in cell-free extract from A. pernix These data distinguish the modified mevalonate pathway of A. pernix and likely, of the majority of archaea from all known mevalonate pathways, such as the eukaryote-type classical pathway, the haloarchaea-type modified pathway, and another modified pathway recently discovered from Thermoplasma acidophilum.


Subject(s)
Aconitate Hydratase , Aeropyrum , Archaeal Proteins , Carboxy-Lyases , Mevalonic Acid/metabolism , Terpenes/metabolism , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Aeropyrum/genetics , Aeropyrum/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...