Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Atmos ; 2(4): 753-760, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35923664

ABSTRACT

Exposure to the secondary pollutant ozone in ambient air is associated with adverse health effects when inhaled. In this work we use surface pressure measurements, combined with X-ray and neutron reflection, to observe changes in a layer of lung surfactant at the air water interface when exposed to gas phase ozone. The results demonstrate that the layer reacts with ozone changing its physical characteristics. A slight loss of material, a significant thinning of the layer and increased hydration of the surfactant material is observed. The results support the hypothesis that unsaturated lipids present in lung surfactant are still susceptible to rapid reaction with ozone and the reaction changes the properties of the interfacial layer.

2.
Biochemistry ; 54(33): 5185-97, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26270023

ABSTRACT

Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air-water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1-25,63-78)], called SMB. Exposure to dilute levels of ozone (~2 ppm) of monolayers of each peptide at the air-water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air-water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function.


Subject(s)
Environmental Pollutants/toxicity , Lung/drug effects , Lung/metabolism , Ozone/toxicity , Pulmonary Surfactant-Associated Protein B/metabolism , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Air/analysis , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphatidylglycerols/metabolism , Pressure , Protein Structure, Secondary , Pulmonary Surfactant-Associated Protein B/chemistry
3.
Inorg Chem ; 51(6): 3557-71, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22356090

ABSTRACT

Three Co(II)-malonate complexes, namely, (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](NO(3))(2) (1), (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](ClO(4))(2) (2), and (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](PF(6))(2) (3) [C(5)H(7)N(2) = protonated 2-aminopyridine, C(3)H(4)O(4) = malonic acid, NO(3)(-) = nitrate, ClO(4)(-) = perchlorate, PF(6)(-) = hexafluorophosphate], have been synthesized from purely aqueous media, and their crystal structures have been determined by single crystal X-ray diffraction. A thorough analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions in 1-3, which are crucial in building supramolecular architectures. When these complexes are structurally compared with their previously reported analogous Ni(II) or Mg(II) compounds, a very interesting feature regarding the role of counteranions has emerged. This phenomenon can be best described as anion-induced formation of extended supramolecular networks of the type lone pair-π/π-π/π-anion-π/π-lone pair and lone pair-π/π-π/π-anion involving various weak forces like lone pair-π, π-π, and anion-π interactions. The strength of these π contacts has been estimated using DFT calculations (M06/6-31+G*), and the formation energy of the supramolecular networks has been also evaluated. The influence of the anion (NO(3)(-), ClO(4)(-), and PF(6)(-)) on the total interaction energy of the assembly is also studied.

4.
J Phys Chem B ; 114(26): 8760-9, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20545330

ABSTRACT

Violerythrin, a blue-colored carotenoid, has been investigated by X-ray crystallography and steady-state and ultrafast time-resolved absorption spectroscopy. The X-ray crystal structure of violerythrin shows that the molecule is nearly planar with the terminal rings positioned in the s-trans conformation. The steady-state and time-resolved spectroscopic data of violerythrin do not differ significantly from those of other carbonyl carotenoids with long (N > 10) pi-electron conjugated chains. This indicates that while the four carbonyl groups in violerythrin are critical for generating the bathochromic shift that leads to the blue color of the molecule, no dramatic changes attributable to a charge-transfer state known to affect the excited-state properties of carotenoids with short polyene chains occur. This may be due to the symmetric distribution of the carbonyl groups, which would preclude such an effect. The structural requirements for a blue, neutral, carotenoid are a planar, symmetric, cross-conjugated chromophore, containing at least 30 pi-electrons, a central polyene chain with 9 or 10 conjugated carbon-carbon double bonds connected at each end by an s-trans or trans bond to two identical, cyclic end groups, each possessing a conjugated keto group further cross-conjugated to another keto group, or a double bond in a quinoid type structure.


Subject(s)
Carotenoids/chemistry , Pigmentation , Spectrum Analysis , Absorption , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...