Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 575, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631529

ABSTRACT

Tungsten heavy alloys have been proposed as plasma facing material components in nuclear fusion reactors and require experimental investigation in their confirmation. For this purpose, a 90W-7Ni-3Fe alloy has been selected and microstructurally manipulated to present a multiphase brick-and-mortar structure of W-phase 'bricks' surrounded by a ductile 'mortar'. This work draws inspiration from nature to artificially imitate the extraordinary combination of strength and stiffness exhibited by mollusks and produce a nacre-mimicking metal matrix composite capable of withstanding the extremely hostile environment of the reactor interior and maintaining structural integrity. The underlying mechanisms behind this integrity have been probed through high-resolution structural and chemical characterization techniques and have revealed chemically diffuse phase boundaries exhibiting unexpected lattice coherency. These features have been attributed to an increase in the energy required for interfacial decohesion in these systems and the simultaneous expression of high strength and toughness in tungsten heavy alloys.

2.
Appl Opt ; 32(1): 91-101, 1993 Jan 01.
Article in English | MEDLINE | ID: mdl-20802666

ABSTRACT

The normal component of thin-film thermal conductivity has been measured for the first time, to the best of our knowledge, for several advanced sputtered optical materials. Included are data for single layers of boron nitride, silicon aluminum nitride, silicon aluminum oxynitride, silicon carbide, and for dielectricenhanced metal reflectors of the form Al(SiO(2)/Si(3)N(4))(n) and Al(Al(2)O(3)/AlN)(n). Sputtered films of more conventional materials such as SiO(2), Al(2)O(3), Ta(2)O(5), Ti, and Si have also been measured. The data show that thin-film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film-substrate interface contribution is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...