Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732224

ABSTRACT

In this report we present seven lines of bioinformatic evidence supporting the conclusion that the Pentameric Ligand-gated Ion Channel (pLIC) Family is a member of the Voltage-gated Ion Channel (VIC) Superfamily. In our approach, we used the Transporter Classification Database (TCDB) as a reference and applied a series of bioinformatic methods to search for similarities between the pLIC family and members of the VIC superfamily. These include: (1) sequence similarity, (2) compatibility of topology and hydropathy profiles, (3) shared domains, (4) conserved motifs, (5) similarity of Hidden Markov Model profiles between families, (6) common 3D structural folds, and (7) clustering analysis of all families. Furthermore, sequence and structural comparisons as well as the identification of a 3-TMS repeat unit in the VIC superfamily suggests that the sixth transmembrane segment evolved into a re-entrant loop. This evidence suggests that the voltage-sensor domain and the channel domain have a common origin. The classification of the pLIC family within the VIC superfamily sheds light onto the topological origins of this family and its evolution, which will facilitate experimental verification and further research into this superfamily by the scientific community.


Subject(s)
Ligand-Gated Ion Channels , Ligand-Gated Ion Channels/metabolism , Ligand-Gated Ion Channels/chemistry , Ligand-Gated Ion Channels/genetics , Humans , Amino Acid Sequence , Computational Biology/methods , Models, Molecular , Multigene Family , Animals , Protein Domains , Phylogeny , Markov Chains
2.
Microb Physiol ; 33(1): 49-62, 2023.
Article in English | MEDLINE | ID: mdl-37321192

ABSTRACT

Members of the Piezo family of mechanically activated cation channels are involved in multiple physiological processes in higher eukaryotes, including vascular development, cell differentiation, touch perception, hearing, and more, but they are also common in single-celled eukaryotic microorganisms. Mutations in these proteins in humans are associated with a variety of diseases, such as colorectal adenomatous polyposis, dehydrated hereditary stomatocytosis, and hereditary xerocytosis. Available 3D structures for Piezo proteins show nine regions of four transmembrane segments each that have the same fold. Despite the remarkable similarity among the nine characteristic structural repeats in the family, no significant sequence similarity among them has been reported. Using bioinformatics approaches and the Transporter Classification Database (TCDB) as reference, we reliably identified sequence similarity among repeats based on four lines of evidence: (1) hidden Markov model-profile similarities across repeats at the family level, (2) pairwise sequence similarities between different repeats across Piezo homologs, (3) Piezo-specific conserved sequence signatures that consistently identify the same regions across repeats, and (4) conserved residues that maintain the same orientation and location in 3D space.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Humans , Clostridioides difficile/metabolism , Ion Channels/genetics , Ion Channels/chemistry , Ion Channels/metabolism , Mutation , Conserved Sequence
3.
Microb Physiol ; 32(3-4): 83-94, 2022.
Article in English | MEDLINE | ID: mdl-35152214

ABSTRACT

Using bioinformatic approaches, we present evidence of distant relatedness among the Ephemerovirus Viroporin family, the Rhabdoviridae Putative Viroporin U5 family, the Phospholemman family, and the Small Integral Membrane Protein family. Our approach is based on the transitivity property of homology complemented with five validation criteria: (1) significant sequence similarity and alignment coverage, (2) compatibility of topology of transmembrane segments, (3) overlap of hydropathy profiles, (4) conservation of protein domains, and (5) conservation of sequence motifs. Our results indicate that Pfam protein domains PF02038 and PF15831 can be found in or projected onto members of all four families. In addition, we identified a 26-residue motif conserved across the superfamily. This motif is characterized by hydrophobic residues that help anchor the protein to the membrane and charged residues that constitute phosphorylation sites. In addition, all members of the four families with annotated function are either responsible for or affect the transport of ions into and/or out of the cell. Taken together, these results justify the creation of the novel Phospholemman/SIMP/Viroporin superfamily. Given that transport proteins can be found not just in cells, but also in viruses, the ability to relate viroporin protein families with their eukaryotic and bacterial counterparts is an important development in this superfamily.


Subject(s)
Membrane Proteins , Viroporin Proteins , Amino Acid Sequence , Dipeptides , Phosphoproteins
4.
PLoS One ; 16(3): e0247806, 2021.
Article in English | MEDLINE | ID: mdl-33770091

ABSTRACT

Upon discovery of the first archaeal species in the 1970s, life has been subdivided into three domains: Eukarya, Archaea, and Bacteria. However, the organization of the three-domain tree of life has been challenged following the discovery of archaeal lineages such as the TACK and Asgard superphyla. The Asgard Superphylum has emerged as the closest archaeal ancestor to eukaryotes, potentially improving our understanding of the evolution of life forms. We characterized the transportomes and their substrates within four metagenome-assembled genomes (MAGs), that is, Odin-, Thor-, Heimdall- and Loki-archaeota as well as the fully sequenced genome of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 that belongs to the Loki phylum. Using the Transporter Classification Database (TCDB) as reference, candidate transporters encoded within the proteomes were identified based on sequence similarity, alignment coverage, compatibility of hydropathy profiles, TMS topologies and shared domains. Identified transport systems were compared within the Asgard superphylum as well as within dissimilar eukaryotic, archaeal and bacterial organisms. From these analyses, we infer that Asgard organisms rely mostly on the transport of substrates driven by the proton motive force (pmf), the proton electrochemical gradient which then can be used for ATP production and to drive the activities of secondary carriers. The results indicate that Asgard archaea depend heavily on the uptake of organic molecules such as lipid precursors, amino acids and their derivatives, and sugars and their derivatives. Overall, the majority of the transporters identified are more similar to prokaryotic transporters than eukaryotic systems although several instances of the reverse were documented. Taken together, the results support the previous suggestions that the Asgard superphylum includes organisms that are largely mixotrophic and anaerobic but more clearly define their metabolic potential while providing evidence regarding their relatedness to eukaryotes.


Subject(s)
Archaea/genetics , Archaeal Proteins/genetics , Carrier Proteins/genetics , Genome, Archaeal , Biological Transport/genetics , Metagenomics
5.
Nucleic Acids Res ; 49(D1): D461-D467, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33170213

ABSTRACT

The Transporter Classification Database (TCDB; tcdb.org) is a freely accessible reference resource, which provides functional, structural, mechanistic, medical and biotechnological information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB) and now (October 1, 2020) consists of 20 653 proteins classified in 15 528 non-redundant transport systems with 1567 tabulated 3D structures, 18 336 reference citations describing 1536 transporter families, of which 26% are members of 82 recognized superfamilies. Overall, this is an increase of over 50% since the last published update of the database in 2016. This comprehensive update of the database contents and features include (i) adoption of a chemical ontology for substrates of transporters, (ii) inclusion of new superfamilies, (iii) a domain-based characterization of transporter families for the identification of new members as well as functional and evolutionary relationships between families, (iv) development of novel software to facilitate curation and use of the database, (v) addition of new subclasses of transport systems including 11 novel types of channels and 3 types of group translocators and (vi) the inclusion of many man-made (artificial) transmembrane pores/channels and carriers.


Subject(s)
Databases, Protein , Membrane Transport Proteins/chemistry , Metagenomics , Protein Domains , Software , Substrate Specificity
6.
PLoS One ; 15(4): e0231085, 2020.
Article in English | MEDLINE | ID: mdl-32320418

ABSTRACT

Here we provide bioinformatic evidence that the Organo-Arsenical Exporter (ArsP), Endoplasmic Reticulum Retention Receptor (KDELR), Mitochondrial Pyruvate Carrier (MPC), L-Alanine Exporter (AlaE), and the Lipid-linked Sugar Translocase (LST) protein families are members of the Transporter-Opsin-G Protein-coupled Receptor (TOG) Superfamily. These families share domains homologous to well-established TOG superfamily members, and their topologies of transmembranal segments (TMSs) are compatible with the basic 4-TMS repeat unit characteristic of this Superfamily. These repeat units tend to occur twice in proteins as a result of intragenic duplication events, often with subsequent gain/loss of TMSs in many superfamily members. Transporters within the ArsP family allow microbial pathogens to expel toxic arsenic compounds from the cell. Members of the KDELR family are involved in the selective retrieval of proteins that reside in the endoplasmic reticulum. Proteins of the MPC family are involved in the transport of pyruvate into mitochondria, providing the organelle with a major oxidative fuel. Members of family AlaE excrete L-alanine from the cell. Members of the LST family are involved in the translocation of lipid-linked glucose across the membrane. These five families substantially expand the range of substrates of transport carriers in the superfamily, although KDEL receptors have no known transport function. Clustering of protein sequences reveals the relationships among families, and the resulting tree correlates well with the degrees of sequence similarity documented between families. The analyses and programs developed to detect distant relatedness, provide insights into the structural, functional, and evolutionary relationships that exist between families of the TOG superfamily, and should be of value to many other investigators.


Subject(s)
Evolution, Molecular , Membrane Transport Proteins/genetics , Opsins/genetics , Receptors, G-Protein-Coupled/genetics , Amino Acid Sequence/genetics , Carrier Proteins/classification , Carrier Proteins/genetics , Computational Biology , Humans , Membrane Transport Proteins/classification , Opsins/classification , Phylogeny , Receptors, G-Protein-Coupled/classification , Receptors, Peptide/genetics
7.
Biochim Biophys Acta Biomembr ; 1862(9): 183277, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32205149

ABSTRACT

The Major Facilitator Superfamily (MFS) is currently the largest characterized superfamily of transmembrane secondary transport proteins. Its diverse members are found in essentially all organisms in the biosphere and function by uniport, symport, and/or antiport mechanisms. In 1993 we first named and described the MFS which then consisted of 5 previously known families that had not been known to be related, and by 2012 we had identified a total of 74 families, classified phylogenetically within the MFS, all of which included only transport proteins. This superfamily has since expanded to 89 families, all included under TC# 2.A.1, and a few transporter families outside of TC# 2.A.1 were identified as members of the MFS. In this study, we assign nine previously unclassified protein families in the Transporter Classification Database (TCDB; http://www.tcdb.org) to the MFS based on multiple criteria and bioinformatic methodologies. In addition, we find integral membrane domains distantly related to partial or full-length MFS permeases in Lysyl tRNA Synthases (TC# 9.B.111), Lysylphosphatidyl Glycerol Synthases (TC# 4.H.1), and cytochrome b561 transmembrane electron carriers (TC# 5.B.2). Sequence alignments, overlap of hydropathy plots, compatibility of repeat units, similarity of complexity profiles of transmembrane segments, shared protein domains and 3D structural similarities between transport proteins were analyzed to assist in inferring homology. The MFS now includes 105 families.


Subject(s)
Membrane Proteins/genetics , Multigene Family/genetics , Protein Transport/genetics , Amino Acid Sequence/genetics , Animals , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Computational Biology , Cytochrome b Group/genetics , Humans , Lysine-tRNA Ligase/genetics , Membrane Proteins/classification , Molecular Conformation , Phylogeny , Sequence Alignment/methods
8.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31227607

ABSTRACT

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Subject(s)
Anoctamins/ultrastructure , Arabidopsis Proteins/ultrastructure , Calcium Channels/ultrastructure , Oryza/ultrastructure , Protein Conformation , Amino Acid Sequence/genetics , Anoctamins/chemistry , Anoctamins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cryoelectron Microscopy , Cytoplasm/genetics , Mass Spectrometry , Membrane Potentials/genetics , Oryza/genetics , Oryza/growth & development , Osmotic Pressure/physiology , Water/chemistry
9.
PLoS One ; 13(3): e0192851, 2018.
Article in English | MEDLINE | ID: mdl-29579047

ABSTRACT

Our laboratory has developed bioinformatic strategies for identifying distant phylogenetic relationships and characterizing families and superfamilies of transport proteins. Results using these tools suggest that the Anoctamin Superfamily of cation and anion channels, as well as lipid scramblases, includes three functionally characterized families: the Anoctamin (ANO), Transmembrane Channel (TMC) and Ca2+-permeable Stress-gated Cation Channel (CSC) families; as well as four families of functionally uncharacterized proteins, which we refer to as the Anoctamin-like (ANO-L), Transmembrane Channel-like (TMC-L), and CSC-like (CSC-L1 and CSC-L2) families. We have constructed protein clusters and trees showing the relative relationships among the seven families. Topological analyses suggest that the members of these families have essentially the same topologies. Comparative examination of these homologous families provides insight into possible mechanisms of action, indicates the currently recognized organismal distributions of these proteins, and suggests drug design potential for the disease-related channel proteins.


Subject(s)
Anoctamins , Multigene Family , Phylogeny , Sequence Analysis, Protein , Anoctamins/chemistry , Anoctamins/genetics , Computational Biology , Humans
10.
Biochim Biophys Acta Biomembr ; 1859(3): 402-414, 2017 03.
Article in English | MEDLINE | ID: mdl-27916633

ABSTRACT

Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships.


Subject(s)
Membrane Proteins/chemistry , Amino Acid Sequence , Animals , Claudins/chemistry , Claudins/classification , Connexins/chemistry , Connexins/classification , Gap Junctions/metabolism , Membrane Proteins/classification , Myelin and Lymphocyte-Associated Proteolipid Proteins/chemistry , Myelin and Lymphocyte-Associated Proteolipid Proteins/classification , Phylogeny , Protein Structure, Tertiary , Sequence Alignment , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...