Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37631363

ABSTRACT

Chronic kidney disease (CKD), a global health concern, is highly prevalent among adults. Presently, there are limited therapeutic options to restore kidney function. This study aimed to investigate the therapeutic potential of breast milk mesenchymal stem cells (Br-MSCs) and their derived exosomes in CKD. Eighty adult male Sprague Dawley rats were randomly assigned to one of six groups, including control, nephropathy, nephropathy + conditioned media (CM), nephropathy + Br-MSCs, nephropathy + Br-MSCs derived exosomes (Br-MSCs-EXOs), and nephropathy + Br-MSCs + Br-MSCs-EXOs. Before administration, Br-MSCs and Br-MSCs-EXOs were isolated, identified, and labeled with PKH-26. SOX2, Nanog, and OCT3/4 expression levels in Br-MSCs and miR-29b, miR-181, and Let-7b in both Br-MSCs and Br-MSCs-EXOs were assayed. Twelve weeks after transplantation, renal function tests, oxidative stress, expression of the long non-coding RNA SNHG-7, autophagy, fibrosis, and expression of profibrotic miR-34a and antifibrotic miR-29b, miR-181, and Let-7b were measured in renal tissues. Immunohistochemical analysis for renal Beclin-1, LC3-II, and P62, Masson trichome staining, and histopathological examination of kidney tissues were also performed. The results showed that Br-MSCs expressed SOX2, Nanog, and OCT3/4, while both Br-MSCs and Br-MSCs-EXOs expressed antifibrotic miR-181, miR-29b, and Let-7b, with higher expression levels in exosomes than in Br-MSCs. Interestingly, the administration of Br-MSCs + EXOs, EXOs, and Br-MSCs improved renal function tests, reduced renal oxidative stress, upregulated the renal expression of SNHG-7, AMPK, ULK-1, Beclin-1, LC3, miR-29b, miR-181, Let-7b, and Smad-7, downregulated the renal expression of miR-34a, AKT, mTOR, P62, TGF-ß, Smad-3, and Coli-1, and ameliorated renal pathology. Thus, Br-MSCs and/or their derived exosomes appear to reduce adenine-induced renal damage by secreting antifibrotic microRNAs and potentiate renal autophagy by modulating SNHG-7 expression.

2.
Front Pharmacol ; 14: 1224985, 2023.
Article in English | MEDLINE | ID: mdl-37497106

ABSTRACT

Introduction: Glucagon-like peptide -1 (GLP-1) is released by intestinal cells to stimulate glucose-dependent insulin release from the pancreas. GLP-1 has been linked to ameliorating obesity and/or diabetic complications as well as controlling reproductive function. Liraglutide is a GLP-1 receptor agonist (GLP-1RA) with 97% homology with GLP-1. The main objective of this study was to investigate the ameliorative role of liraglutide in diabetic-induced reproductive dysfunction in male rats. Methods: Rats were randomly allocated into 3 groups; a control group, a diabetic group, and a liraglutide-treated diabetic group. Results: In the diabetic group, a significant increase in BMI, FBG, HbA1c, HOMA-IR, TC, TAG, LDL, IL6, TNFα, and MDA, as well as decreased serum insulin, HDL, GSH, total testosterone, LH, and FSH, were shown compared to the control group. Furthermore, A significant downregulation in relative hypothalamic gene expression of GLP-1R, PPAR-α, PGC-1α, kiss, kiss1R, leptin, leptin R, GnRH GLP-1R, testicular PGC-1α, PPARα, kiss1, kiss1R, STAR, CYP17A1, HSD17B3, CYP19A, CYP11A1, and Smad7, as well as upregulation in hypothalamic GnIH and testicular TGF- ß and Smad2 expression, were noticed compared to the control group. Liraglutide treatment significantly improved such functional and structural reproductive disturbance in diabetic rats. Conclusion: GLP-1RAs ameliorated the deleterious effects of diabetes on reproductive function by targeting GLP-1/leptin/kiss1/GnRH, steroidogenesis, and TGF- ß/Smad pathways.

3.
Eur J Pharmacol ; 905: 174188, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34004210

ABSTRACT

Type 1 diabetes mellitus (T1DM) is one of the autoimmune diseases characterized by beta-cell dysfunction with serious health complications. Br-MSCs represent a novel valid candidate in regenerative medicine disciplines. Yet, the full potential of Br-MSCs in managing type 1 diabetes remains elusive. Indeed, this study was designed to explore a novel approach investigating the possible regenerative capacity of Br-MSCs in type1 diabetic islet on the level of the cellular mRNA expression of different molecular pathways involved in pancreatic beta-cell dysfunction. Sixty adult male Sprague-Dawley rats were randomly assigned into 3 groups (20 rats each); the control group, type1 diabetic group, and the type 1 diabetic Br-MSCs treated group. And, for the first time, our results revealed that intraperitoneally transplanted Br-MSCs homed to the diabetic islet and improved fasting blood glucose, serum insulin level, pancreatic oxidative stress, upregulated pancreatic mRNA expression for: regenerative markers (Pdx1, Ngn3, PCNA), INS, beta-cell receptors (IRS1, IRß, PPARγ), pancreatic growth factors (IGF-1, VEGFß1, FGFß), anti-inflammatory cytokine (IL10) and anti-apoptotic marker (BCL2) too, Br-MSCs downregulated pancreatic mRNA expression for: inflammatory markers (NFKß, TNFα, IL1ß, IL6, IL8, MCP1), apoptotic markers for both intrinsic and extrinsic pathways (FAS, FAS-L, P53, P38, BAX, Caspase3), ER stress markers (ATF6, ATF3, ATF4, BIP, CHOP, JNK, XBP1) and autophagy inhibitor (mTOR). In conclusion, Br-MSCs could be considered as a new insight in beta cell regenerative therapy improving the deteriorated diabetic islet microenvironment via modulating; ER stress, inflammatory, and apoptotic signaling pathways besides, switching on the cellular quality control system (autophagy) thus enhancing beta-cell function.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Diabetes Mellitus, Type 1/metabolism , Endoplasmic Reticulum Stress , Homeodomain Proteins/genetics , Insulin-Secreting Cells/metabolism , Mesenchymal Stem Cells/metabolism , Nerve Tissue Proteins/genetics , Proliferating Cell Nuclear Antigen/genetics , Trans-Activators/genetics , Animals , Apoptosis/genetics , Diabetes Mellitus, Experimental/metabolism , Endoplasmic Reticulum Stress/genetics , Glycemic Control , Inflammation/genetics , Insulin/genetics , Insulin-Secreting Cells/pathology , Lipid Peroxidation , Male , Mesenchymal Stem Cell Transplantation , Milk, Human/chemistry , Milk, Human/metabolism , Oxidative Stress , Rats, Sprague-Dawley , Receptor, Insulin/genetics , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL