Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 19(34): 11153-7, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23839906

ABSTRACT

Perfect to a THT! Screening a diverse library of thioether ligands led to the discovery of tetrahydrothiophene (THT) as a highly reactive and selective ligand for Pd-catalyzed allylic CH oxidation reactions. This novel ligand system provides some of the highest reported yields for the formation of (E)-linear allylic acetates through allylic CH activation chemistry (BQ = 1,4-benzoquinone).

2.
Org Lett ; 14(23): 6000-3, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23163699

ABSTRACT

The palladium-catalyzed oxidation of alkyl enol ethers to enals, which employs low loadings of a palladium catalyst, is described. The mild oxidation conditions tolerate a diverse array of functional groups, while allowing the formation of di-, tri-, and tetrasubtituted olefins. The application of this methodology to intramolecular reactions of alkyl enol ethers containing pendant alcohols provides furan and 2,5-dihydrofuran products.

3.
J Am Chem Soc ; 133(46): 18503-5, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22010961

ABSTRACT

The allylic oxidation of cis-vinylsilanes is reported. The reaction requires a low catalyst loading of Pd(OAc)(2) without the need for an external ligand. Interestingly, trans-vinylsilanes are unreactive, whereas allylic oxidations of cis-vinylsilanes proceed in good yields giving a single diastereo- and regioisomer of the branched allylic acetate trans-vinylsilane when benzoquinone is employed. The use of PhI(OAc)(2) as oxidant in place of benzoquinone provides the branched, cis-vinylsilane as the major product. Additionally, the first intramolecular allylic C-H etherifications of cis-vinylsilanes to give oxygen heterocycles are also described.

4.
Org Lett ; 12(4): 824-7, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20099865

ABSTRACT

A palladium catalyst that converts terminal olefins to linear allylic acetates at lower catalyst loadings and faster reaction times than current systems is reported. This reaction can be conducted using benzoquinone as the oxidizing agent or catalytic amounts of copper and hydroquinone under one atmosphere of oxygen. Preliminary reactivity studies of pi-allylpalladium complexes under our reaction conditions do not provide results similar to those obtained in the catalytic reaction, which may suggest an alternative reaction pathway. The palladium catalyst is ligated by an aryloxyalkyl aryl sulfide, which is identified as a new ligand for homogeneous catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...