Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3838, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158480

ABSTRACT

Chronic dietary protein-restriction can create essential amino acid deficiencies and induce metabolic adaptation through the hepatic FGF21 pathway which serves to maintain host fitness during prolonged states of nutritional imbalance. Similarly, the gut microbiome undergoes metabolic adaptations when dietary nutrients are added or withdrawn. Here we confirm previous reports that dietary protein-restriction triggers the hepatic FGF21 adaptive metabolic pathway and further demonstrate that this response is mediated by the gut microbiome and can be tuned through dietary supplementation of fibers that alter the gut microbiome. In the absence of a gut microbiome, we discover that FGF21 is de-sensitized to the effect of protein-restriction. These data suggest that host-intrinsic adaptive pathways to chronic dietary protein-restriction, such as the hepatic FGF21 pathway, may in-fact be responding first to adaptive metabolic changes in the gut microbiome.


Subject(s)
Adaptation, Physiological/physiology , Diet, Protein-Restricted , Dietary Proteins/administration & dosage , Fibroblast Growth Factors/metabolism , Gastrointestinal Microbiome/physiology , Stress, Physiological/physiology , Animals , Bacteria/classification , Bacteria/genetics , Cellulose/administration & dosage , Cellulose/pharmacology , Dietary Proteins/metabolism , Gastrointestinal Microbiome/drug effects , Insulin/administration & dosage , Insulin/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Population Dynamics , RNA, Ribosomal, 16S/genetics , Time Factors
2.
Cell ; 183(3): 666-683.e17, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32991841

ABSTRACT

A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.


Subject(s)
Adipose Tissue/microbiology , Bacterial Translocation , Gastrointestinal Microbiome , Mesentery/microbiology , Adipose Tissue/pathology , Animals , Biodiversity , Biomarkers/metabolism , Cell Polarity , Cells, Cultured , Colitis, Ulcerative/pathology , Crohn Disease/microbiology , Crohn Disease/pathology , Gastrointestinal Microbiome/genetics , Gene Expression Regulation , Germ-Free Life , Humans , Ileum/microbiology , Ileum/pathology , Lipopolysaccharides/metabolism , Macrophages/metabolism , Metagenome , Metagenomics , Mice , Mice, Inbred C57BL , Phenotype , RNA, Ribosomal, 16S/genetics , Stem Cells/metabolism
3.
J Clin Invest ; 129(10): 4050-4057, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31573550

ABSTRACT

The metabolic syndrome (MetS) is a constellation of risk factors that, if left untreated, will often progress to greater metabolic defects such as type 2 diabetes and nonalcoholic fatty liver disease. While these risk factors have been established for over 40 years, the definition of MetS warrants reconsideration in light of the substantial data that have emerged from studies of the gut microbiome. In this Review we present the existing recent literature that supports the gut microbiome's potential influence on the various risk factors of MetS. The interplay of the intestinal microbiota with host metabolism has been shown to be mediated by a myriad of factors, including a defective gut barrier, bile acid metabolism, antibiotic use, and the pleiotropic effects of microbially produced metabolites. These data show that events that start in the gut, often in response to external cues such as diet and circadian disruption, have far-reaching effects beyond the gut.


Subject(s)
Gastrointestinal Microbiome/physiology , Metabolic Syndrome/etiology , Animals , Diet , Dyslipidemias/etiology , Dyslipidemias/microbiology , Fecal Microbiota Transplantation , Host Microbial Interactions/physiology , Humans , Inflammation/etiology , Inflammation/microbiology , Insulin Resistance , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Models, Biological , Obesity/etiology , Obesity/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...