Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
Hum Mol Genet ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39137370

ABSTRACT

Mutations in methyl-CpG binding protein 2 (MeCP2), such as the T158M, P152R, R294X, and R306C mutations, are responsible for most Rett syndrome (RTT) cases. These mutations often result in altered protein expression that appears to correlate with changes in the nuclear size; however, the molecular details of these observations are poorly understood. Using a C2C12 cellular system expressing human MeCP2-E1 isoform as well as mouse models expressing these mutations, we show that T158M and P152R result in a decrease in MeCP2 protein, whereas R306C has a milder variation, and R294X resulted in an overall 2.5 to 3 fold increase. We also explored the potential involvement of the MeCP2 PEST domains in the proteasome-mediated regulation of MeCP2. Finally, we used the R294X mutant to gain further insight into the controversial competition between MeCP2 and histone H1 in the chromatin context. Interestingly, in R294X, MeCP2 E1 and E2 isoforms were differently affected, where the E1 isoform contributes to much of the overall protein increase observed, while E2 decreases by half. The modes of MeCP2 regulation, thus, appear to be differently regulated in the two isoforms.

2.
Aging Cell ; 23(7): e14150, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576084

ABSTRACT

Hutchinson-Gilford Progeria syndrome (HGPS) is a lethal premature aging disorder caused by a de novo heterozygous mutation that leads to the accumulation of a splicing isoform of Lamin A termed progerin. Progerin expression deregulates the organization of the nuclear lamina and the epigenetic landscape. Progerin has also been observed to accumulate at low levels during normal aging in cardiovascular cells of adults that do not carry genetic mutations linked with HGPS. Therefore, the molecular mechanisms that lead to vascular dysfunction in HGPS may also play a role in vascular aging-associated diseases, such as myocardial infarction and stroke. Here, we show that HGPS patient-derived vascular smooth muscle cells (VSMCs) recapitulate HGPS molecular hallmarks. Transcriptional profiling revealed cardiovascular disease remodeling and reactive oxidative stress response activation in HGPS VSMCs. Proteomic analyses identified abnormal acetylation programs in HGPS VSMC replication fork complexes, resulting in reduced H4K16 acetylation. Analysis of acetylation kinetics revealed both upregulation of K16 deacetylation and downregulation of K16 acetylation. This correlates with abnormal accumulation of error-prone nonhomologous end joining (NHEJ) repair proteins on newly replicated chromatin. The knockdown of the histone acetyltransferase MOF recapitulates preferential engagement of NHEJ repair activity in control VSMCs. Additionally, we find that primary donor-derived coronary artery vascular smooth muscle cells from aged individuals show similar defects to HGPS VSMCs, including loss of H4K16 acetylation. Altogether, we provide insight into the molecular mechanisms underlying vascular complications associated with HGPS patients and normative aging.


Subject(s)
Cardiovascular Diseases , Progeria , Progeria/metabolism , Progeria/genetics , Progeria/pathology , Humans , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aging/metabolism , Lamin Type A/metabolism , Lamin Type A/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Models, Cardiovascular , Adult
3.
Chromosoma ; 133(2): 135-148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400910

ABSTRACT

In higher eukaryotic cells, a string of nucleosomes, where long genomic DNA is wrapped around core histones, are rather irregularly folded into a number of condensed chromatin domains, which have been revealed by super-resolution imaging and Hi-C technologies. Inside these domains, nucleosomes fluctuate and locally behave like a liquid. The behavior of chromatin may be highly related to DNA transaction activities such as transcription and repair, which are often upregulated in cancer cells. To investigate chromatin behavior in cancer cells and compare those of cancer and non-cancer cells, we focused on oncogenic-HRAS (Gly12Val)-transformed mouse fibroblasts CIRAS-3 cells and their parental 10T1/2 cells. CIRAS-3 cells are tumorigenic and highly metastatic. First, we found that HRAS-induced transformation altered not only chromosome structure, but also nuclear morphology in the cell. Using single-nucleosome imaging/tracking in live cells, we demonstrated that nucleosomes are locally more constrained in CIRAS-3 cells than in 10T1/2 cells. Consistently, heterochromatin marked with H3K27me3 was upregulated in CIRAS-3 cells. Finally, Hi-C analysis showed enriched interactions of the B-B compartment in CIRAS-3 cells, which likely represents transcriptionally inactive chromatin. Increased heterochromatin may play an important role in cell migration, as they have been reported to increase during metastasis. Our study also suggests that single-nucleosome imaging provides new insights into how local chromatin is structured in living cells.


Subject(s)
Chromatin , Fibroblasts , Histones , Nucleosomes , Proto-Oncogene Proteins p21(ras) , Animals , Mice , Fibroblasts/metabolism , Chromatin/metabolism , Chromatin/genetics , Nucleosomes/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Histones/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Heterochromatin/metabolism , Heterochromatin/genetics
4.
Nucleic Acids Res ; 51(20): 11056-11079, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37823600

ABSTRACT

Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.


Subject(s)
Poly ADP Ribosylation , Poly Adenosine Diphosphate Ribose , Humans , DNA/genetics , DNA/metabolism , DNA Damage , DNA Repair , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism
5.
NAR Cancer ; 5(3): zcad043, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37609662

ABSTRACT

Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.

6.
Cell Rep ; 42(6): 112567, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37243597

ABSTRACT

Chromatin compaction differences may have a strong impact on accessibility of individual macromolecules and macromolecular assemblies to their DNA target sites. Estimates based on fluorescence microscopy with conventional resolution, however, suggest only modest compaction differences (∼2-10×) between the active nuclear compartment (ANC) and inactive nuclear compartment (INC). Here, we present maps of nuclear landscapes with true-to-scale DNA densities, ranging from <5 to >300 Mbp/µm3. Maps are generated from individual human and mouse cell nuclei with single-molecule localization microscopy at ∼20 nm lateral and ∼100 nm axial optical resolution and are supplemented by electron spectroscopic imaging. Microinjection of fluorescent nanobeads with sizes corresponding to macromolecular assemblies for transcription into nuclei of living cells demonstrates their localization and movements within the ANC and exclusion from the INC.


Subject(s)
Chromatin , DNA , Humans , Animals , Mice , DNA/genetics , Cell Nucleus/genetics , Chromosomes , Microscopy, Fluorescence/methods
7.
Microscopy (Oxf) ; 72(4): 299-309, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37040437

ABSTRACT

Transmission electron microscopy (TEM) has been essential in defining the structural organization of the cell due to its ability to image cell structures at molecular resolution. However, the absence of colour has made it very difficult to compare the distributions and relationships of two or more types of biomolecules simultaneously if they lack clear morphological distinctions. Furthermore, single-channel information limits functional analysis, particularly in the nucleoplasm, where fibrillar material could be chromatin, ribonucleic acid or protein. Where specific stains exist to discriminate among these molecules, they cannot be combined because conventional TEM is a single-channel technology. A potential path around this barrier is through electron spectroscopic imaging (ESI). ESI can map the distributions of chemical elements within an ultrathin section. Here, we present methods to stain specific molecules with elements that ESI can visualize to enable multichannel electron microscopy.


Subject(s)
Cell Nucleus , Chromatin , Microscopy, Electron , Microscopy, Electron, Transmission , Staining and Labeling
8.
Front Genet ; 13: 876862, 2022.
Article in English | MEDLINE | ID: mdl-36092926

ABSTRACT

Chromatin is thought to regulate the accessibility of the underlying DNA sequence to machinery that transcribes and repairs the DNA. Heterochromatin is chromatin that maintains a sufficiently high density of DNA packing to be visible by light microscopy throughout the cell cycle and is thought to be most restrictive to transcription. Several studies have suggested that larger proteins and protein complexes are attenuated in their access to heterochromatin. In addition, heterochromatin domains may be associated with phase separated liquid condensates adding further complexity to the regulation of protein concentration within chromocenters. This provides a solvent environment distinct from the nucleoplasm, and proteins that are not size restricted in accessing this liquid environment may partition between the nucleoplasm and heterochromatin based on relative solubility. In this study, we assessed the accessibility of constitutive heterochromatin in mouse cells, which is organized into large and easily identifiable chromocenters, to fluorescently tagged DNA damage response proteins. We find that proteins larger than the expected 10 nm size limit can access the interior of heterochromatin. We find that the sensor proteins Ku70 and PARP1 enrich in mouse chromocenters. At the same time, MRE11 shows variability within an asynchronous population that ranges from depleted to enriched but is primarily homogeneously distribution between chromocenters and the nucleoplasm. While larger downstream proteins such as ATM, BRCA1, and 53BP1 are commonly depleted in chromocenters, they show a wide range of concentrations, with none being depleted beyond approximately 75%. Contradicting exclusively size-dependent accessibility, many smaller proteins, including EGFP, are also depleted in chromocenters. Our results are consistent with minimal size-dependent selectivity but a distinct solvent environment explaining reduced concentrations of diffusing nucleoplasmic proteins within the volume of the chromocenter.

9.
Front Genet ; 13: 887088, 2022.
Article in English | MEDLINE | ID: mdl-35923694

ABSTRACT

Cells assemble compartments around DNA double-strand breaks (DSBs). The assembly of this compartment is dependent on the phosphorylation of histone H2AX, the binding of MDC1 to phosphorylated H2AX, and the assembly of downstream signaling and repair components. The decision on whether to use homologous recombination or nonhomologous end-joining repair depends on competition between 53BP1 and BRCA1. A major point of control appears to be DNA replication and associated changes in the epigenetic state. This includes dilution of histone H4 dimethylation and an increase in acetylation of lysine residues on H2A and H4 that impair 53BP1 binding. In this article, we examined more closely the spatial relationship between 53BP1 and BRCA1 within the cell cycle. We find that 53BP1 can associate with early S-phase replicated chromatin and that the relative concentration of BRCA1 in DSB-associated compartments correlates with increased BRCA1 nuclear abundance as cells progress into and through S phase. In most cases during S phase, both BRCA1 and 53BP1 are recruited to these compartments. This occurs for both IR-induced DSBs and breaks targeted to an integrated LacO array through a LacI-Fok1-mCherry fusion protein. Having established that the array system replicates this heterogeneity, we further examined the spatial relationship between DNA repair components. This enabled us to precisely locate the DNA containing the break and map other proteins relative to that DNA. We find evidence for at least three subcompartments. The damaged DNA, single-stranded DNA generated from end resection of the array, and nuclease CtIP all localized to the center of the compartment. BRCA1 and 53BP1 largely occupied discrete regions of the focus. One of BRCA1 or 53BP1 overlaps with the array, while the other is more peripherally located. The array-overlapping protein occupied a larger volume than the array, CtIP, or single-stranded DNA (ssDNA). Rad51 often occupied a much larger volume than the array itself and was sometimes observed to be depleted in the array volume where the ssDNA exclusively localizes. These results highlight the complexity of molecular compartmentalization within DSB repair compartments.

10.
Epigenetics Chromatin ; 14(1): 50, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34717733

ABSTRACT

The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.


Subject(s)
Chromatin , Nucleosomes , Cell Nucleus , DNA
11.
FEBS J ; 288(23): 6736-6751, 2021 12.
Article in English | MEDLINE | ID: mdl-34101354

ABSTRACT

Cell proliferation and survival require continuous ribosome biogenesis and protein synthesis. Genes encoding ribosomal RNA are physically located in a specialized substructure within the nucleus known as the nucleolus, which has a central role in the biogenesis of ribosomes. Matrix metalloproteinase-2 was previously detected in the nucleus, however, its role there is elusive. Herein we report that matrix metalloproteinase-2 resides within the nucleolus to regulate ribosomal RNA transcription. Matrix metalloproteinase-2 is enriched at the promoter region of ribosomal RNA gene repeats, and its inhibition downregulates preribosomal RNA transcription. The N-terminal tail of histone H3 is clipped by matrix metalloproteinase-2 in the nucleolus, which is associated with increased ribosomal RNA transcription. Knocking down/out matrix metalloproteinase-2, or inhibiting its activity, prevents histone H3 cleavage and reduces both ribosomal RNA transcription and cell proliferation. In addition to the known extracellular roles of matrix metalloproteinase-2 in tumor growth, our data reveal an epigenetic mechanism whereby intranucleolar matrix metalloproteinase-2 regulates cell proliferation through histone clipping and facilitation of ribosomal RNA transcription.


Subject(s)
Cell Nucleolus/genetics , Gene Expression Regulation, Neoplastic , Histones/metabolism , Matrix Metalloproteinase 2/genetics , RNA, Ribosomal/genetics , Transcription, Genetic , Cell Line, Tumor , Cell Nucleolus/metabolism , Cell Proliferation/genetics , Epigenesis, Genetic , Gene Knockout Techniques , Humans , MCF-7 Cells , Matrix Metalloproteinase 2/metabolism , Microscopy, Fluorescence , PC-3 Cells , RNA, Ribosomal/metabolism
13.
Cell ; 183(7): 1772-1784.e13, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33326747

ABSTRACT

The association of nuclear DNA with histones to form chromatin is essential for temporal and spatial control of eukaryotic genomes. In this study, we examined the physical state of condensed chromatin in vitro and in vivo. Our in vitro studies demonstrate that self-association of nucleosomal arrays under a wide range of solution conditions produces supramolecular condensates in which the chromatin is physically constrained and solid-like. By measuring DNA mobility in living cells, we show that condensed chromatin also exhibits solid-like behavior in vivo. Representative heterochromatin proteins, however, display liquid-like behavior and coalesce around the solid chromatin scaffold. Importantly, euchromatin and heterochromatin show solid-like behavior even under conditions that produce limited interactions between chromatin fibers. Our results reveal that condensed chromatin exists in a solid-like state whose properties resist external forces and create an elastic gel and provides a scaffold that supports liquid-liquid phase separation of chromatin binding proteins.


Subject(s)
Chromatin/metabolism , Acetylation/drug effects , Animals , Cell Line , Cell Survival/drug effects , Chromatin/drug effects , DNA Damage , Euchromatin/metabolism , Fluorescence , Heterochromatin/metabolism , Histone Deacetylase Inhibitors/pharmacology , Lasers , Mice , Models, Biological , Osmolar Concentration , Photobleaching
14.
Nat Commun ; 10(1): 2954, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273204

ABSTRACT

PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of PARP-1 leads to hyperresected DNA DSBs. We show that loss of PARP-1 and hyperresection are associated with loss of Ku, 53BP1 and RIF1 resection inhibitors from the break site. DNA curtains analysis show that EXO1-mediated resection is blocked by PARP-1. Furthermore, PARP-1 abrogation leads to increased DNA resection tracks and an increase of homologous recombination in cellulo. Our results, therefore, place PARP-1 activation as a critical early event for DNA DSB repair activation and regulation of resection. Hence, our work has direct implications for the clinical use and effectiveness of PARP inhibition, which is prescribed for the treatment of various malignancies.


Subject(s)
DNA Breaks, Double-Stranded , DNA/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Animals , Chromatin/metabolism , Gene Knockdown Techniques , HeLa Cells , Homologous Recombination/genetics , Humans , Mice , Models, Biological , Nuclear Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
15.
Nat Commun ; 10(1): 1182, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862789

ABSTRACT

Protein ADP-ribosylation is essential for the regulation of several cellular pathways, enabling dynamic responses to diverse pathophysiological conditions. It is modulated through a dynamic interplay between ADP-ribose readers, writers and erasers. While ADP-ribose synthesis has been studied and reviewed extensively, ADP-ribose processing by erasing enzymes has received comparably less attention. However, major progress in the mass spectrometric identification of ADP-ribosylated residues and the biochemical characterization of ADP-ribose erasers has substantially expanded our knowledge of ADP-ribosylation dynamics. Herein, we describe recent insights into the biology of ADP-ribose erasers and discuss the intricately orchestrated cellular processes to switch off ADP-ribose-dependent mechanisms.


Subject(s)
ADP Ribose Transferases/metabolism , ADP-Ribosylation/physiology , Adenosine Diphosphate Ribose/metabolism , Glycoside Hydrolases/metabolism , Poly(ADP-ribose) Polymerases/metabolism , ADP-Ribosylation/drug effects , Animals , Glycoside Hydrolases/antagonists & inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/pharmacology
16.
J Biol Chem ; 294(2): 520-530, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30446622

ABSTRACT

Polynucleotide kinase/phosphatase (PNKP) and X-ray repair cross-complementing 1 (XRCC1) are key proteins in the single-strand DNA break repair pathway. Phosphorylated XRCC1 stimulates PNKP by binding to its forkhead-associated (FHA) domain, whereas nonphosphorylated XRCC1 stimulates PNKP by interacting with the PNKP catalytic domain. Here, we have further studied the interactions between these two proteins, including two variants of XRCC1 (R194W and R280H) arising from single-nucleotide polymorphisms (SNPs) that have been associated with elevated cancer risk in some reports. We observed that interaction of the PNKP FHA domain with phosphorylated XRCC1 extends beyond the immediate, well-characterized phosphorylated region of XRCC1 (residues 515-526). We also found that an XRCC1 fragment, comprising residues 166-436, binds tightly to PNKP and DNA and efficiently activates PNKP's kinase activity. However, interaction of either of the SNP-derived variants of this fragment with PNKP was considerably weaker, and their stimulation of PNKP was severely reduced, although they still could bind DNA effectively. Laser microirradiation revealed reduced recruitment of PNKP to damaged DNA in cells expressing either XRCC1 variant compared with PNKP recruitment in cells expressing WT XRCC1 even though WT and variant XRCC1s were equally efficient at localizing to the damaged DNA. These findings suggest that the elevated risk of cancer associated with these XRCC1 SNPs reported in some studies may be due in part to the reduced ability of these XRCC1 variants to recruit PNKP to damaged DNA.


Subject(s)
DNA Repair Enzymes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Polymorphism, Single Nucleotide , Protein Interaction Domains and Motifs , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism , Animals , CHO Cells , Cricetulus , DNA Damage , DNA Repair Enzymes/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Protein Interaction Maps , X-ray Repair Cross Complementing Protein 1/chemistry
17.
Int J Radiat Biol ; 95(4): 382-393, 2019 04.
Article in English | MEDLINE | ID: mdl-30252564

ABSTRACT

PURPOSE: The cellular response to DNA damage occurs in the context of an organized chromatin environment in order to maintain genome integrity. Immediately after DNA damage, an array of histone modifications are induced to relieve the physical constraints of the chromatin environment, mark the site as damaged, and function as a platform for the assembly of mediator and effector proteins of DNA damage response signaling pathway. Changes in chromatin structure in the vicinity of the DNA double-strand break (DSB) facilitates the efficient initiation of the DNA damage signaling cascade. Failure of induction of DNA damage responsive histone modifications may lead to genome instability and cancer. Here we will discuss our current understanding of the DNA damage responsive histone modifications and their role in DNA repair as well as their implications for genome stability. We further discuss recent studies which highlight not only how histone modification has involved in the signaling and remodeling at the DSB but also how it influences the DNA repair pathway choice. CONCLUSIONS: Histone modifications pattern alter during the induction of DNA DSBs induction as well as during the repair and recovery phase of DNA damage response. It will be interesting to understand more precisely, how DSBs within chromatin are repaired by HR and NHEJ. The emergence of proteomic and genomic technologies in combination with advanced microscopy and imaging methods will help in better understanding the role of chromatin environment in the regulation of genome stability.


Subject(s)
DNA Damage , DNA Repair , Histones/metabolism , Protein Processing, Post-Translational , Signal Transduction/physiology , Acetylation , DNA Breaks, Double-Stranded , Heterochromatin , Humans , Methylation , Phosphorylation , Ubiquitination
18.
Cell Rep ; 22(2): 383-395, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29320735

ABSTRACT

Ring1-YY1-binding protein (RYBP) is a member of the non-canonical polycomb repressive complex 1 (PRC1), and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF) domain. Since K63-linked ubiquitin chains are assembled at DNA double-strand breaks (DSBs), we examined the contribution of RYBP to DSB repair. Surprisingly, we find that RYBP is K48 polyubiquitylated by RNF8 and rapidly removed from chromatin upon DNA damage by the VCP/p97 segregase. High expression of RYBP competitively inhibits recruitment of BRCA1 repair complex to DSBs, reducing DNA end resection and homologous recombination (HR) repair. Moreover, breast cancer cell lines expressing high endogenous RYBP levels show increased sensitivity to DNA-damaging agents and poly ADP-ribose polymerase (PARP) inhibition. These data suggest that RYBP negatively regulates HR repair by competing for K63-ubiquitin chain binding.


Subject(s)
DNA Repair/genetics , Homologous Recombination/genetics , Intracellular Signaling Peptides and Proteins/genetics , Animals , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Repressor Proteins
19.
PLoS One ; 13(1): e0191562, 2018.
Article in English | MEDLINE | ID: mdl-29352283

ABSTRACT

Histones H1 or linker histones are highly dynamic proteins that diffuse throughout the cell nucleus and associate with chromatin (DNA and associated proteins). This binding interaction of histone H1 with the chromatin is thought to regulate chromatin organization and DNA accessibility to transcription factors and has been proven to involve a kinetic process characterized by a population that associates weakly with chromatin and rapidly dissociates and another population that resides at a binding site for up to several minutes before dissociating. When considering differences between these two classes of interactions in a mathematical model for the purpose of describing and quantifying the dynamics of histone H1, it becomes apparent that there could be several assembly pathways that explain the kinetic data obtained in living cells. In this work, we model these different pathways using systems of reaction-diffusion equations and carry out a model comparison analysis using FRAP (fluorescence recovery after photobleaching) experimental data from different histone H1 variants to determine the most feasible mechanism to explain histone H1 binding to chromatin. The analysis favors four different chromatin assembly pathways for histone H1 which share common features and provide meaningful biological information on histone H1 dynamics. We show, using perturbation analysis, that the explicit consideration of high- and low-affinity associations of histone H1 with chromatin in the favored assembly pathways improves the interpretation of histone H1 experimental FRAP data. To illustrate the results, we use one of the favored models to assess the kinetic changes of histone H1 after core histone hyperacetylation, and conclude that this post-transcriptional modification does not affect significantly the transition of histone H1 from a weakly bound state to a tightly bound state.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Histones/metabolism , Models, Biological , Acetylation , Animals , Chromatin/chemistry , Chromatin/metabolism , DNA/metabolism , Fluorescence Recovery After Photobleaching , Histones/chemistry , Kinetics , Protein Binding , Protein Processing, Post-Translational
20.
Aging Cell ; 16(4): 870-887, 2017 08.
Article in English | MEDLINE | ID: mdl-28597562

ABSTRACT

Ideally, disease modeling using patient-derived induced pluripotent stem cells (iPSCs) enables analysis of disease initiation and progression. This requires any pathological features of the patient cells used for reprogramming to be eliminated during iPSC generation. Hutchinson-Gilford progeria syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome-wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease. We generated a library of iPSC lines from fibroblasts of patients with HGPS and controls, including one family trio. HGPS patient-derived iPSCs are nearly indistinguishable from controls in terms of pluripotency, nuclear membrane integrity, as well as transcriptional and epigenetic profiles, and can differentiate into affected cell lineages recapitulating disease progression, despite the nuclear aberrations, altered gene expression, and epigenetic landscape inherent to the donor fibroblasts. These analyses demonstrate the power of iPSC reprogramming to reset the epigenetic landscape to a revitalized pluripotent state in the face of widespread epigenetic defects, validating their use to model the initiation and progression of disease in affected cell lineages.


Subject(s)
Cellular Reprogramming , Epigenesis, Genetic , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Lamin Type A/genetics , Progeria/genetics , Base Sequence , Case-Control Studies , Cell Differentiation , Cellular Senescence , Fibroblasts/pathology , Gene Expression Profiling , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Histones/genetics , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/pathology , Karyotype , Lamin Type A/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Primary Cell Culture , Progeria/metabolism , Progeria/pathology
SELECTION OF CITATIONS
SEARCH DETAIL