Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37929994

ABSTRACT

Intestinal ischemia-reperfusion injury (IRI) is associated with a myriad of conditions in both veterinary and human medicine. Intestinal IRI conditions, such as gastric dilatation volvulus (GDV), mesenteric torsion, and colic, are observed in animals such as dogs and horses. An initial interruption of blood flow causes tissues to become ischemic. Although necessary to salvage viable tissue, subsequent reperfusion can induce further injury. The main mechanism responsible for IRI is free radical formation upon reperfusion and reintroduction of oxygen into damaged tissue, but there are many other components involved. The resulting local and systemic effects often impart a poor prognosis. Intestinal IRI has been the subject of extensive research over the past 50 years. An in vivo rodent model in which the base of the superior mesenteric artery (SMA) is temporarily ligated is currently the most common method used to study intestinal IRI. Here, we describe a model of intestinal IRI utilizing isoflurane anesthesia in 21% O2 medical air that yields reproducible injury, as demonstrated by consistent histopathology of the small intestines. Tissue injury was also assessed in the colon, liver, and kidneys.


Subject(s)
Mesenteric Artery, Superior , Reperfusion Injury , Animals , Intestines/surgery , Intestines/pathology , Ischemia/pathology , Reperfusion Injury/pathology , Rodentia
2.
Int J Toxicol ; 42(5): 407-419, 2023.
Article in English | MEDLINE | ID: mdl-37126671

ABSTRACT

The overall prevalence of metabolic diseases such as type 2 diabetes (T2D) and associated co-morbidities have increased at an alarming rate in the United States and worldwide. There is a growing body of epidemiological evidence implicating exposure to persistent organic pollutants (POPs), including legacy organochlorine (OC) pesticides and their bioaccumulative metabolites, in the pathogenesis of metabolic diseases. Therefore, the goal of the present study was to determine if exposure to trans-nonachlor, a bioaccumulative OC pesticide contaminant, in concert with high fat diet intake induced metabolic dysfunction. Briefly, male Sprague Dawley rats were exposed to trans-nonachlor (.5 or 5 ppm) in either a low fat (LFD) or high fat diet (HFD) for 16 weeks. At 8 weeks of intake, trans-nonachlor decreased serum triglyceride levels in LFD and HFD fed animals and at 16 weeks compared to LFD fed animals. Interestingly, serum glucose levels were decreased by trans-nonachlor (5 ppm) in LFD fed animals at 16 weeks. Serum free fatty acids were increased by trans-nonachlor exposure (5 ppm) in LFD fed animals at 16 weeks. HFD fed animals displayed signs of hepatic steatosis including elevated liver triglycerides, liver enzymes, and liver lipid peroxidation which were not significantly altered by trans-nonachlor exposure. However, there was a trans-nonachlor mediated increase in expression of fatty acid synthase in livers of LFD fed animals and not HFD fed animals. Thus, the present data indicate exposure to trans-nonachlor in conjunction with LFD or HFD intake produces both diet and exposure dependent effects on lipid and glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Hydrocarbons, Chlorinated , Pesticides , Rats , Animals , Male , Rats, Sprague-Dawley , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Hydrocarbons, Chlorinated/metabolism , Hydrocarbons, Chlorinated/pharmacology , Liver , Pesticides/toxicity
3.
Toxicol In Vitro ; 80: 105329, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151815

ABSTRACT

Chlorpyrifos (CPS) is the most widely used organophosphate (OP) insecticide. Non-cholinergic targets of OPs include enzymes belonging to the serine hydrolase family. Carboxylesterases (Ces) are involved in detoxication of xenobiotics as well as lipid metabolism in the liver. Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are responsible for hydrolyzing endocannabinoids and can also be inhibited by OP compounds. However, there are no in vitro studies examining the sensitivities of these non-cholinergic endpoints following CPS exposure in the steatotic liver. Therefore, we determined the effects of CPS on these endpoints in immortalized McArdle-RH7777 (MCA) hepatoma cells and primary rat hepatocytes under normal and steatotic conditions. Ces activity was more sensitive to inhibition than MAGL or FAAH activity following exposure to the lowest CPS concentration. Additionally, Ces and MAGL activities in steatotic primary hepatocytes were less sensitive to CPS mediated inhibition than those in normal primary hepatocytes, whereas Ces inhibition was more pronounced in steatotic MCA cells. These findings suggest that steatotic conditions enhance the inhibition of hepatic serine hydrolases following exposure to CPS in an enzyme- and cell type-specific manner. CPS-mediated inhibition of these enzymes may play a part in the alterations of hepatic lipid metabolism following OP exposures.


Subject(s)
Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Hepatocytes/drug effects , Insecticides/toxicity , Amidohydrolases/metabolism , Animals , Carboxylic Ester Hydrolases/metabolism , Cells, Cultured , Fatty Liver/metabolism , Hepatocytes/metabolism , Male , Monoacylglycerol Lipases/metabolism , Rats, Sprague-Dawley
4.
Toxicol In Vitro ; 65: 104791, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32057836

ABSTRACT

The role of macrophages in the innate immune response cannot be underscored however recent studies have demonstrated that both resident and recruited macrophages have critical roles in the pathogenesis of metabolic dysfunction. Given the recent data implicating exposure to persistent organic pollutants (POPs) in the pathogenesis of metabolic diseases, the current study was designed to examine the effects of the highly implicated organochlorine (OC) compounds oxychlordane and trans-nonachlor on overall macrophage function. Murine J774A.1 macrophages were exposed to trans-nonachlor or oxychlordane (0 - 20 µM) for 24 hours then phagocytosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, caspase activities, pro-inflammatory cytokine production, and macrophage plasticity were assessed. Overall, exposure to oxychlordane significantly decreased macrophage phagocytosis while both OC compounds significantly increased ROS generation. Exposure to trans-nonachlor significantly increased secretion of tumor necrosis factor alpha (TNFα) and interleukin-6 whereas oxychlordane had a biphasic effect on TNFα secretion. However, both oxychlordane and trans-nonachlor decreased basal expression of the M1 pro-inflammatory marker cyclooxygenase 2. Taken together, these data indicate that exposure to these two OC compounds have both compound and concentration dependent effects on macrophage function which may alter both the innate immune response and impact metabolic function of key organs involved in metabolic diseases.


Subject(s)
Chlordan/analogs & derivatives , Hydrocarbons, Chlorinated/toxicity , Insecticides/toxicity , Macrophages/drug effects , Animals , Cell Line , Chlordan/toxicity , Inflammation , Macrophages/physiology , Membrane Potential, Mitochondrial/drug effects , Mice , Oxidative Stress/drug effects , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism
5.
Environ Toxicol ; 33(9): 962-971, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29964320

ABSTRACT

Recent epidemiological studies have revealed significant positive associations between exposure to organochlorine (OC) pesticides and occurrence of the metabolic syndrome and there are a growing number of animal-based studies to support causality. However, the cellular mechanisms linking OC compound exposure and metabolic dysfunction remain elusive. Therefore, the present study was designed to determine if direct exposure to three highly implicated OC compounds promoted hepatic steatosis, the hepatic ramification of the metabolic syndrome. First, the steatotic effect of p,p'-dichlorodiphenyldichloroethylene (DDE), oxychlordane, and trans-nonachlor was determined in freshly isolated rat primary hepatocytes. Exposure to trans-nonachlor significantly increased neutral lipid accumulation as opposed to DDE and oxychlordane. To determine possible mechanisms governing increased fatty acid availability, the effects of trans-nonachlor exposure on fatty acid uptake, de novo lipogenesis, triglyceride secretion, and fatty acid oxidation were explored. Trans-nonachlor did not significantly alter fatty acid uptake. However, insulin-stimulated de novo lipogenesis as well as basal expression of fatty acid synthase, a major regulator of lipogenesis were significantly increased following trans-nonachlor exposure. Interestingly, there was a significant decrease in fatty acid oxidation following trans-nonachlor exposure. This decrease in fatty acid oxidation was accompanied by a slight, but significant increase in oleic acid-induced cellular triglyceride secretion. Therefore, taken together, the present data indicate direct exposure to trans-nonachlor has a more potent pro-steatotic effect than exposure to DDE or oxychlordane. This pro-steatotic effect of trans-nonachlor appears to be predominately mediated via increased de novo lipogenesis and decreased fatty acid oxidation.


Subject(s)
Hydrocarbons, Chlorinated/toxicity , Lipid Metabolism/drug effects , Pesticides/toxicity , Animals , Chlordan/analogs & derivatives , Chlordan/toxicity , Dichlorodiphenyl Dichloroethylene/toxicity , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Insulin/pharmacology , Lipogenesis/drug effects , Male , Oxidation-Reduction , Rats, Sprague-Dawley , Triglycerides/metabolism
6.
Toxicol In Vitro ; 50: 285-292, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29654899

ABSTRACT

Recent studies suggest there may be an environmental exposure component to the development and progression of non-alcoholic fatty liver disease (NAFLD) involving the organochlorine (OC) pesticides or their metabolites. However, the roles of OC compounds in the development of NAFLD has not been fully elucidated. Therefore, the current study was designed to determine if exposure to trans-nonachlor, a prevalent OC compound, could promote hepatocyte lipid accumulation and determine potential pro-steatotic mechanisms. McArdle-RH7777 (McA) hepatoma cells were incubated with trans-nonachlor for 24 h then neutral lipid accumulation was determined by Oil Red O staining. Exposure to trans-nonachlor produced a concentration dependent increase in neutral lipid accumulation. Trans-nonachlor also increased extracellular free fatty acid-induced neutral lipid accumulation which appears to be due at least in part to increased free fatty acid accumulation as evident by increased accumulation of Bodipy labeled dodecanoic acid. Additionally, 14C-acetate incorporation into total cellular lipids was increased by trans-nonachlor implicating increased de novo lipogenesis (DNL) as a potential mediator of trans-nonachlor-induced neutral lipid accumulation. Taken together, the present data indicate exposure to trans-nonachlor has a direct, pro-steatotic effect on hepatocytes to increase lipid accumulation through the combinatorial actions of extracellular free fatty acid accumulation and increased DNL.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Hepatocytes/drug effects , Hydrocarbons, Chlorinated/toxicity , Insecticides/toxicity , Lipogenesis/drug effects , Animals , Apolipoproteins B/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Fatty Liver/metabolism , Hepatocytes/metabolism , Rats
8.
PLoS Negl Trop Dis ; 10(10): e0005022, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764112

ABSTRACT

Schistosomiasis remains a health burden in many parts of the world. The complex life cycle of Schistosoma parasites and the economic and societal conditions present in endemic areas make the prospect of eradication unlikely in the foreseeable future. Continued and vigorous research efforts must therefore be directed at this disease, particularly since only a single World Health Organization (WHO)-approved drug is available for treatment. The National Institutes of Health (NIH)-National Institute of Allergy and Infectious Diseases (NIAID) Schistosomiasis Resource Center (SRC) at the Biomedical Research Institute provides investigators with the critical raw materials needed to carry out this important research. The SRC makes available, free of charge (including international shipping costs), not only infected host organisms but also a wide array of molecular reagents derived from all life stages of each of the three main human schistosome parasites. As the field of schistosomiasis research rapidly advances, it is likely to become increasingly reliant on omics, transgenics, epigenetics, and microbiome-related research approaches. The SRC has and will continue to monitor and contribute to advances in the field in order to support these research efforts with an expanding array of molecular reagents. In addition to providing investigators with source materials, the SRC has expanded its educational mission by offering a molecular techniques training course and has recently organized an international schistosomiasis-focused meeting. This review provides an overview of the materials and services that are available at the SRC for schistosomiasis researchers, with a focus on updates that have occurred since the original overview in 2008.


Subject(s)
Biomedical Research , National Institute of Allergy and Infectious Diseases (U.S.) , Schistosoma , Schistosomiasis , Animals , Biological Specimen Banks , Humans , National Institute of Allergy and Infectious Diseases (U.S.)/statistics & numerical data , United States , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...