Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202402853, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598262

ABSTRACT

In the development of dendritic cell (DC) vaccines, the maturation of DCs is a critical stage. Adjuvants play a pivotal role in the maturation of DCs, with a major concern being to ensure both efficacy and safety. This study introduces an innovative approach that combines high efficacy with safety through the synthesis of micro-adjuvants grafted with copolymers of 2-(methacrylamido) glucopyranose (MAG) and methacryloxyethyl trimethyl ammonium chloride (DMC). The utilization of metal-free surface-initiated atom transfer radical polymerization enables the production of safe and recyclable adjuvants. These micrometer-sized adjuvants surpass the optimal size range for cellular endocytosis, enabling the retrieval and reuse of them during the ex vivo maturation process, mitigating potential toxicity concerns associated with the endocytosis of non-metabolized nanoparticles. Additionally, the adjuvants exhibit a "micro-ligand-mediated maturation enhancement" effect for DC maturation. This effect is influenced by the shape of the particle, as evidenced by the distinct promotion effects of rod-like and spherical micro-adjuvants with comparable sizes. Furthermore, the porous structure of the adjuvants enables them to function as cargo-carrying "micro-shuttles", releasing antigens upon binding to DCs to facilitate efficient antigen delivery.

2.
ACS Macro Lett ; 13(3): 273-279, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38345474

ABSTRACT

The immune system can recognize and respond to pathogens of various shapes. Synthetic materials that can change their shape have the potential to be used in vaccines and immune regulation. The ability of supramolecular assemblies to undergo reversible transformations in response to environmental stimuli allows for dynamic changes in their shapes and functionalities. A meticulously designed oligo(azobenzene-graft-mannose) was synthesized using a stepwise iterative method and "click" chemistry. This involved integrating hydrophobic and photoresponsive azobenzene units with hydrophilic and bioactive mannose units. The resulting oligomer, with its precise structure, displayed versatile assembly morphologies and chiralities that were responsive to light. These varying assembly morphologies demonstrated distinct capabilities in terms of inhibiting the proliferation of cancer cells and stimulating the maturation of dendritic cells. These discoveries contribute to the theoretical comprehension and advancement of photoswitchable bioactive materials.


Subject(s)
Azo Compounds , Mannose , Azo Compounds/chemistry , Click Chemistry , Hydrophobic and Hydrophilic Interactions
3.
Angew Chem Int Ed Engl ; 63(2): e202315782, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38018480

ABSTRACT

Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.


Subject(s)
Neoplasms , Vaccines , Mice , Animals , T-Lymphocytes , Antigens, Neoplasm , Neoplasms/metabolism , Ovalbumin , Cell Membrane , Dendritic Cells/metabolism
4.
Adv Healthc Mater ; 12(28): e2301536, 2023 11.
Article in English | MEDLINE | ID: mdl-37590030

ABSTRACT

Insufficient activation or over-activation of T cells due to the dendritic cells (DCs) state can cause negative effects on immunotherapy, making it crucial for DCs to maintain different states in different treatments. Polysaccharides are one of the most studied substances to promote DCs maturation. However, in many methods, optimizing the spatial dimension of the interaction between polysaccharides and cells is often overlooked. Therefore, in this study, a new strategy from the perspective of spatial dimension is proposed to regulate the efficacy of polysaccharides in promoting DCs maturation. An anchoring molecule (DMA) is introduced to existing glycopolymers for the confinement effect, and the effect can be turned off by oxidation of DMA. Among the prepared on-confined (PMD2 ), off-confined (PMD2 -O), and norm (PM2 ) glycopolymers, PMD2 and PMD2 -O show the best and worst results, respectively, in terms of the amount of binding to DCs and the effect on promoting DCs maturation. This sufficiently shows that the turn-on and off of confinement effect can regulate the maturation of DCs by polysaccharides. Based on the all-atom molecular dynamics (MD) simulation, the mechanism of difference in the confinement effect is explained. This simple method can also be used to regulate other molecule-cell interactions to guide cell behavior.


Subject(s)
Immunotherapy , T-Lymphocytes , Cell Differentiation , Polysaccharides , Dendritic Cells/metabolism
5.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770653

ABSTRACT

Diseases induced by bacterial and viral infections are common occurrences in our daily life, and the main prevention and treatment strategies are vaccination and taking antibacterial/antiviral drugs. However, vaccines can only be used for specific viral infections, and the abuse of antibacterial/antiviral drugs will create multi-drug-resistant bacteria and viruses. Therefore, it is necessary to develop more targeted prevention and treatment methods against bacteria and viruses. Proteins on the surface of bacteria and viruses can specifically bind to sugar, so glycopolymers can be used as potential antibacterial and antiviral drugs. In this review, the research of glycopolymers for bacterial/viral detection/inhibition and antibacterial/antiviral applications in recent years are summarized.


Subject(s)
Antiviral Agents , Virus Diseases , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Carbohydrates , Virus Diseases/drug therapy , Sugars , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
6.
Biomacromolecules ; 23(3): 1075-1082, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35089683

ABSTRACT

The search for novel fluorescent materials has attracted the attention of many researchers. Numerous bioimaging materials based on the aggregation-induced emission (AIE) units have been surging and could be employed in wide areas during the past two decades. In recent few years, the appearance of nonconventional fluorescence emitters without aromatic conjugated structures provides another bioimaging candidate which has the advantage of enhanced biodegradability and relatively low cost, and their luminescent mechanism can be explained by clustering-triggered emission (CTE) like AIE. In our contribution, we utilize nonaromatic sugar as a monomer to prepare a series of glycopolymers with designed components through sunlight-induced reversible addition fragmentation chain transfer polymerization; these glycopolymers can be employed in bioimaging fields due to the bioactivity coming from sugar and CTE capacity.


Subject(s)
Nanoparticles , Sugars , Carbohydrates , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Polymerization , Polymers/chemistry , Shoulder
7.
ACS Appl Mater Interfaces ; 13(31): 36859-36867, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34333963

ABSTRACT

Glycopolymer-based drugs for immunotherapy have attracted increasing attention because the affinity between glycans and proteins plays an important role in immune responses. Previous studies indicate that the polymer chain length influences the affinity. In the studies on enhancing the immune response by glycans, it is found that both oligosaccharides and long-chain glycopolymers work well. However, there is a lack of systematic studies on the immune enhancement effect and the binding ability of oligomers and polymers to immune-related proteins. In this paper, to study the influence of the chain length, glycopolymers based on N-acetylglucosamine with different chain lengths were synthesized, and their interaction with immune-related proteins and their effect on dendritic cell maturation were evaluated. It was proved that compared with l-glycopolymers (degree of polymerization (DP) > 20), s-glycopolymers (DP < 20) showed better binding ability to the dendritic cell-specific ICAM-3-grabbing nonintegrin protein and the toll-like receptor 4 and myeloid differentiation factor 2 complex protein by quartz crystal microbalance and molecular docking simulation. When the total sugar unit amounts are equal, s-glycopolymers are proved to be superior in promoting dendritic cell maturation by detecting the expression level of CD80 and CD86 on the surface of dendritic cells. Through the combination of experimental characterization and theoretical simulation, a deep look into the interaction between immune-related proteins and glycopolymers with different chain lengths is helpful to improve the understanding of the immune-related interactions and provides a good theoretical basis for the design of new glycopolymer-based immune drugs.


Subject(s)
Cell Adhesion Molecules/metabolism , Lectins, C-Type/metabolism , Lymphocyte Antigen 96/metabolism , Polymethacrylic Acids/pharmacology , Receptors, Cell Surface/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cell Line , Dendritic Cells/drug effects , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Glucosamine/pharmacology , Glucosamine/toxicity , Ligands , Mice , Molecular Docking Simulation , Molecular Structure , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/metabolism , Polymethacrylic Acids/toxicity , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...