Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 7(1)2020.
Article in English | MEDLINE | ID: mdl-31924732

ABSTRACT

Localization of odors is essential to animal survival, and thus animals are adept at odor navigation. In natural conditions animals encounter odor sources in which odor is carried by air flow varying in complexity. We sought to identify potential minimalist strategies that can effectively be used for odor-based navigation and asses their performance in an increasingly chaotic environment. To do so, we compared mouse, in silico model, and Arduino-based robot odor-localization behavior in a standardized odor landscape. Mouse performance remains robust in the presence of increased complexity, showing a shift in strategy towards faster movement with increased environmental complexity. Implementing simple binaral and temporal models of tropotaxis and klinotaxis, an in silico model and Arduino robot, in the same environment as the mice, are equally successful in locating the odor source within a plume of low complexity. However, performance of these algorithms significantly drops when the chaotic nature of the plume is increased. Additionally, both algorithm-driven systems show more successful performance when using a strictly binaral model at a larger sensor separation distance and more successful performance when using a temporal and binaral model when using a smaller sensor separation distance. This suggests that with an increasingly chaotic odor environment, mice rely on complex strategies that allow for robust odor localization that cannot be resolved by minimal algorithms that display robust performance at low levels of complexity. Thus, highlighting that an animal's ability to modulate behavior with environmental complexity is beneficial for odor localization.


Subject(s)
Computer Simulation , Odorants , Robotics , Algorithms , Animals , Mice , Movement , Smell
2.
Semin Cell Dev Biol ; 35: 109-23, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25016297

ABSTRACT

Mathematical modeling of developmental signaling networks has played an increasingly important role in the identification of regulatory mechanisms by providing a sandbox for hypothesis testing and experiment design. Whether these models consist of an equation with a few parameters or dozens of equations with hundreds of parameters, a prerequisite to model-based discovery is to bring simulated behavior into agreement with observed data via parameter estimation. These parameters provide insight into the system (e.g., enzymatic rate constants describe enzyme properties). Depending on the nature of the model fit desired - from qualitative (relative spatial positions of phosphorylation) to quantitative (exact agreement of spatial position and concentration of gene products) - different measures of data-model mismatch are used to estimate different parameter values, which contain different levels of usable information and/or uncertainty. To facilitate the adoption of modeling as a tool for discovery alongside other tools such as genetics, immunostaining, and biochemistry, careful consideration needs to be given to how well a model fits the available data, what the optimized parameter values mean in a biological context, and how the uncertainty in model parameters and predictions plays into experiment design. The core discussion herein pertains to the quantification of model-to-data agreement, which constitutes the first measure of a model's performance and future utility to the problem at hand. Integration of this experimental data and the appropriate choice of objective measures of data-model agreement will continue to drive modeling forward as a tool that contributes to experimental discovery. The Drosophila melanogaster gap gene system, in which model parameters are optimized against in situ immunofluorescence intensities, demonstrates the importance of error quantification, which is applicable to a wide array of developmental modeling studies.


Subject(s)
Drosophila melanogaster/genetics , Homeodomain Proteins/genetics , Models, Genetic , Morphogenesis/genetics , Signal Transduction/genetics , Trans-Activators/genetics , Algorithms , Animals , Computer Simulation , Drosophila Proteins , Drosophila melanogaster/embryology , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL