Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2595: 93-100, 2023.
Article in English | MEDLINE | ID: mdl-36441456

ABSTRACT

MicroRNAs are key posttranscriptional regulators of protein levels in cells. The brain is particularly enriched in microRNAs, and important roles have been demonstrated for these noncoding RNAs in various neurological disorders. To this end, visualization of microRNAs in specific cell types and subcellular compartments within tissue sections provides researchers with essential insights that support understanding of the cell and molecular mechanisms of microRNAs in brain diseases. In this chapter we describe an in situ hybridization protocol for the detection of microRNAs in mouse brain sections, which provides cellular resolution of the expression of microRNAs in the brain.


Subject(s)
Brain Diseases , MicroRNAs , Animals , Mice , Humans , MicroRNAs/genetics , In Situ Hybridization , Brain , Research Personnel
3.
Commun Biol ; 4(1): 826, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211098

ABSTRACT

Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Insulin Resistance/genetics , Lipid Metabolism/genetics , Monocarboxylic Acid Transporters/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Gene Expression , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Monocarboxylic Acid Transporters/deficiency , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Oxygen Consumption/genetics
4.
ESC Heart Fail ; 8(2): 938-942, 2021 04.
Article in English | MEDLINE | ID: mdl-33638612

ABSTRACT

AIMS: Neprilysin (NEP), a zinc metallopeptidase, degrades a variety of bioactive peptides including natriuretic peptides terminating their biological action on arterial blood pressure and natriuresis. Pharmacological inhibition of NEP reduces mortality in patients with heart failure with reduced ejection fraction. Physiological interventions reducing NEP levels are unknown in humans. Because obesity leads to increased NEP levels and increases the risk for heart failure, we hypothesized that weight loss reduces NEP concentrations in plasma and tissue. METHODS AND RESULTS: We randomized overweight to obese human subjects to a low-fat or low-carbohydrate hypocaloric 6 month weight loss intervention. Soluble NEP was determined in plasma, and NEP mRNA was analysed from subcutaneous adipose tissue before and after diet. Low-fat diet-induced weight loss reduced soluble NEP levels from 0.83 ± 0.18 to 0.72 ± 0.18 µg/L (P = 0.038), while subcutaneous adipose tissue NEP mRNA expression was reduced by both dietary interventions [21% (P = 0.0057) by low-fat diet and 16% (P = 0.048) by low-carbohydrate diet]. We also analysed the polymorphisms of the gene coding for NEP, rs9827586 and rs701109, known to be associated with plasma NEP levels. For both single-nucleotide polymorphisms, minor allele carriers (A/A) had higher baseline plasma NEP levels (rs9827586: ß = 0.53 ± 0.23, P < 0.0001; rs701109: ß = 0.43 ± 0.22, P = 0.0016), and minor allele carriers of rs9827586 responded to weight loss with a larger NEP reduction (rs9827586: P = 0.0048). CONCLUSIONS: Our study identifies weight loss via a hypocaloric low-fat diet as the first physiological intervention in humans to reduce NEP in plasma and adipose tissue. Specific single-nucleotide polymorphisms further contribute to the decrease. Our findings may help to explain the beneficial effect of weight loss on cardiac function in patients with heart failure.


Subject(s)
Diet, Fat-Restricted , Neprilysin , Diet, Reducing , Humans , Obesity/complications , Overweight , Research Subjects
5.
JCI Insight ; 6(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33491666

ABSTRACT

Reduced expression of the plasma membrane citrate transporter INDY (acronym I'm Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target.


Subject(s)
Blood Pressure/genetics , Blood Pressure/physiology , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/physiology , Sympathoadrenal System/physiology , Symporters/genetics , Symporters/physiology , Adrenal Glands/anatomy & histology , Adrenal Glands/physiology , Animals , Caloric Restriction , Catecholamines/biosynthesis , Cell Line , Chromaffin Cells/physiology , Dicarboxylic Acid Transporters/deficiency , Gene Expression , Heart Rate/genetics , Heart Rate/physiology , Longevity/genetics , Longevity/physiology , Malates/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Cardiovascular , Motor Activity/genetics , Motor Activity/physiology , Pyridines/pharmacology , Symporters/deficiency
6.
NPJ Aging Mech Dis ; 6(1): 13, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33298924

ABSTRACT

Chronic nutrient excess leads to metabolic disorders and insulin resistance. Activation of stress-responsive pathways via Nrf2 activation contributes to energy metabolism regulation. Here, inducible activation of Nrf2 in mice and transgenesis of the Nrf2 target, NQO1, conferred protection from diet-induced metabolic defects through preservation of glucose homeostasis, insulin sensitivity, and lipid handling with improved physiological outcomes. NQO1-RNA interaction mediated the association with and inhibition of the translational machinery in skeletal muscle of NQO1 transgenic mice. NQO1-Tg mice on high-fat diet had lower adipose tissue macrophages and enhanced expression of lipogenic enzymes coincident with reduction in circulating and hepatic lipids. Metabolomics data revealed a systemic metabolic signature of improved glucose handling, cellular redox, and NAD+ metabolism while label-free quantitative mass spectrometry in skeletal muscle uncovered a distinct diet- and genotype-dependent acetylation pattern of SIRT3 targets across the core of intermediary metabolism. Thus, under nutritional excess, NQO1 transgenesis preserves healthful benefits.

7.
Neurobiol Dis ; 143: 105018, 2020 09.
Article in English | MEDLINE | ID: mdl-32682952

ABSTRACT

In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.


Subject(s)
Brain/metabolism , Citric Acid/metabolism , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/metabolism , Hippocampus/physiopathology , Seizures/metabolism , Symporters/genetics , Symporters/metabolism , Animals , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/metabolism , Female , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Nerve Net/physiopathology , Neurons/metabolism , Seizures/genetics
8.
Pharmacol Rev ; 72(1): 343-379, 2020 01.
Article in English | MEDLINE | ID: mdl-31882442

ABSTRACT

The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Solute Carrier Proteins/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , Molecular Targeted Therapy , Non-alcoholic Fatty Liver Disease/metabolism , Solute Carrier Proteins/antagonists & inhibitors
9.
Int J Obes (Lond) ; 42(12): 2057-2061, 2018 12.
Article in English | MEDLINE | ID: mdl-29795470

ABSTRACT

Neurotensin is a peptide with effects on appetite and intestinal lipid absorption. Experimental data suggest a role in glucose homeostasis, while human data is missing. Here, 20 morbidly obese subjects either underwent biliopancreatic diversion with duodenal switch (BPD), or Roux-en-Y gastric bypass (RYGB) in a randomized fashion. Before and 1 year after surgery, anthropometric data, body composition, clinical biochemistry, insulin sensitivity by means of euglycemic hyperinsulinemic clamps (HEC) and fasting plasma proneurotensin 1-117 were analyzed. Plasma proneurotensin increased significantly more 1 year after BDP than RYGB (P = 0.028), while weight loss was comparable. After metabolic surgery, proneurotensin correlated positively with insulin sensitivity (M-value) (r = 0.55, P < 0.001), while an inverse relationship with fasting glucose, HOMA-IR and HbA1c was observed (P < 0.05 for all components). After adjustment for age and gender, proneurotensin and BMI remained independently related with delta of M-value (ß = 0.46 and ß = 0.51, P < 0.05, resp.). From these data we conclude that proneurotensin positively correlates with insulin sensitivity uniquely after weight loss induced by metabolic surgery in humans. BDP leads to a stronger increase in the anorexigenic peptide compared to RYGB.


Subject(s)
Biliopancreatic Diversion/statistics & numerical data , Gastric Bypass/statistics & numerical data , Insulin Resistance/physiology , Neurotensin/blood , Obesity, Morbid , Adult , Blood Glucose/analysis , Blood Glucose/metabolism , Female , Humans , Male , Middle Aged , Obesity, Morbid/blood , Obesity, Morbid/epidemiology , Obesity, Morbid/metabolism , Obesity, Morbid/surgery , Protein Precursors/blood
10.
Pharmacol Ther ; 185: 1-11, 2018 05.
Article in English | MEDLINE | ID: mdl-28987323

ABSTRACT

The regulation of metabolic processes by the Indy (I'm Not Dead Yet) (SLC13A5/NaCT) gene was revealed through studies in Drosophila melanogaster and Caenorhabditis elegans. Reducing the expression of Indy in these species extended their life span by a mechanism resembling caloric restriction, without reducing food intake. In D. melanogaster, mutating the Indy gene reduced body fat content, insulin-like proteins and reactive oxygen species production. Subsequent studies indicated that Indy encodes a citrate transporter located on the cell plasma membrane. The transporter is highly expressed in the mammalian liver. We generated a mammalian knock out model deleting the mammalian homolog mIndy (SLC13A5). The knock out animals were protected from HFD induced obesity, fatty liver and insulin resistance. Moreover, we have shown that inducible and liver selective knock down of mIndy protects against the development of fatty liver and insulin resistance and that obese humans with type 2 diabetes and non-alcoholic fatty liver disease have increased levels of mIndy. Therefore, the transporter mINDY (NaCT) has been proposed to be an 'ideal target for the treatment of metabolic disease'. A small molecule inhibitor of the mINDY transporter has been generated, normalizing glucose levels and reducing fatty liver in a model of diet induced obese mice. Taken together, studies from lower organisms, mammals and humans suggest that mINDY (NaCT) is an attractive target for the treatment of metabolic disease.


Subject(s)
Dicarboxylic Acid Transporters/metabolism , Symporters/metabolism , Animals , Citric Acid/metabolism , Dicarboxylic Acid Transporters/chemistry , Dicarboxylic Acid Transporters/genetics , Humans , Longevity/genetics , Metabolic Diseases/metabolism , Neurons/metabolism , Symporters/chemistry , Symporters/genetics
12.
Mol Neurodegener ; 12(1): 21, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28235423

ABSTRACT

BACKGROUND: The ubiquitin-proteasome-system (UPS) is the major intracellular pathway leading to the degradation of unwanted and/or misfolded soluble proteins. This includes proteins regulating cellular survival, synaptic plasticity and neurotransmitter signaling; processes controlling excitability thresholds that are altered by epileptogenic insults. Dysfunction of the UPS has been reported to occur in a brain region- and cell-specific manner and contribute to disease progression in acute and chronic brain diseases. Prolonged seizures, status epilepticus, may alter UPS function but there has been no systematic attempt to map when and where this occurs in vivo or to determine the consequences of proteasome inhibition on seizure-induced brain injury. METHOD: To determine whether seizures lead to an impairment of the UPS, we used a mouse model of status epilepticus whereby seizures are triggered by an intra-amygdala injection of kainic acid. Status epilepticus in this model causes cell death in selected brain areas, in particular the ipsilateral CA3 subfield of the hippocampus, and the development of epilepsy after a short latent period. To monitor seizure-induced dysfunction of the UPS we used a UPS inhibition reporter mouse expressing the ubiquitin fusion degradation substrate ubiquitinG76V-green fluorescent protein. Treatment with the specific proteasome inhibitor epoxomicin was used to establish the impact of proteasome inhibition on seizure-induced pathology. RESULTS AND CONCLUSIONS: Our studies show that status epilepticus induced by intra-amygdala kainic acid causes select spatio-temporal UPS inhibition which is most evident in damage-resistant regions of the hippocampus, including CA1 pyramidal and dentate granule neurons then appears later in astrocytes. In support of this exerting a beneficial effect, injection of mice with the proteasome inhibitor epoxomicin protected the normally vulnerable hippocampal CA3 subfield from seizure-induced neuronal death in the model. These studies reveal brain region- and cell-specific UPS impairment occurs after seizures and suggest UPS inhibition can protect against seizure-induced brain damage. Identifying networks or pathways regulated through the proteasome after seizures may yield novel target genes for the treatment of seizure-induced cell death and possibly epilepsy.


Subject(s)
Adaptation, Physiological/physiology , Hippocampus/physiopathology , Proteasome Endopeptidase Complex/physiology , Status Epilepticus/physiopathology , Animals , Blotting, Western , Disease Models, Animal , Fluorescent Antibody Technique , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Real-Time Polymerase Chain Reaction , Ubiquitin/metabolism
13.
Methods Mol Biol ; 1509: 85-91, 2017.
Article in English | MEDLINE | ID: mdl-27826920

ABSTRACT

MicroRNAs are key posttranscriptional regulators of protein levels in cells. The brain is particularly enriched in microRNAs, and important roles have been demonstrated for these noncoding RNAs in various neurological disorders. To this end, visualization of microRNAs in specific cell types and subcellular compartments within tissue sections provides researchers with essential insights that support understanding of the cell and molecular mechanisms of microRNAs in brain diseases. In this chapter we describe an in situ hybridization protocol for the detection of microRNAs in mouse brain sections, which provides cellular resolution of the expression of microRNAs in the brain.


Subject(s)
Brain/metabolism , In Situ Hybridization , MicroRNAs/metabolism , Animals , Mice , Tissue Fixation
15.
Cell ; 162(5): 974-86, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317466

ABSTRACT

We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a type I interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response 2-fold and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model.


Subject(s)
DNA Methylation/drug effects , Interferon Type I/immunology , Melanoma/immunology , Melanoma/therapy , Animals , Azacitidine/pharmacology , Cell Line, Tumor , DNA Modification Methylases/antagonists & inhibitors , Endogenous Retroviruses/genetics , Female , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , RNA, Double-Stranded/metabolism
16.
PLoS One ; 10(7): e0132099, 2015.
Article in English | MEDLINE | ID: mdl-26154387

ABSTRACT

Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell cultures, resembling muscle biopsies of cyclists. Myoblast treatment with anti-Synycytin-1 abrogated cell fusion in vitro. Our findings support functional roles for ERV envelope proteins, especially Syncytin-1, contributing to cell fusion of myotubes.


Subject(s)
Endogenous Retroviruses/genetics , Exercise , Genes, Viral , Myoblasts/cytology , Myoblasts/virology , Physical Endurance , Adolescent , Bicycling , Cell Fusion , Cells, Cultured , Cryoultramicrotomy , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Muscle Fibers, Skeletal/metabolism , Real-Time Polymerase Chain Reaction , Satellite Cells, Skeletal Muscle/metabolism , Time Factors
17.
Retrovirology ; 12: 9, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25888968

ABSTRACT

BACKGROUND: LTR-retrotransposons became functional neogenes through evolution by acquiring promoter sequences, regulatory elements and sequence modification. Mammalian retrotransposon transcripts (Mart1-9), also called sushi-ichi-related retrotransposon-homolog (SIRH) genes, are a class of Ty3/gypsy LTR-retroelements showing moderate homology to the sushi-ichi LTR-retrotransposon in pufferfish. Rtl1/Mart1 and Peg10/Mart2 expression in mouse placenta and demonstration of their functional roles during placental development exemplifies their importance in cellular processes. In this study, we analyzed all eleven mouse Mart genes from the blastocyst stage and throughout placentogenesis in order to gain information about their expression and regulation. RESULTS: Quantitative PCR, in situ hybridization (ISH) and immunoblotting showed various expression patterns of the 11 mouse Mart genes through different placental stages. Zcchc5/Mart3, Zcchc16/ Mart4 and Rgag1/Mart9 expression was undetectable. Rtl1/Mart1, Peg10/Mart2, Rgag4/Mart5 - Cxx1a,b,c/Mart8b,c,a gene expression was very low at the blastocyst stage. Later placental stages showed an increase of expression for Rtl1/Mart1, Rgag4/Mart5 - Cxx1a,b,c/Mart8b,c,a, the latter up to 1,489 molecules/ng cDNA at E9.5. From our recently published findings Peg10/Mart2 was the most highly expressed Mart gene. ISH demonstrated sense and antisense transcript co-localization of Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a in trophoblast subtypes at the junctional zone, with an accumulation of antisense transcripts in the nuclei. To validate these results, we developed a TAG-aided sense/antisense transcript detection (TASA-TD) method, which verified sense and antisense transcripts for Rtl1/Mart1, Rgag4/Mart5 - Cxx1a,b,c/Mart8b,c,a. Except for Rtl1/Mart1 and Cxx1a,b/Mart8b,c all other Mart genes showed a reduced amount of antisense transcripts. Northern blot and 5' and 3' RACE confirmed both sense and antisense transcripts for Ldoc1/Mart7 and Cxx1a,b,c/Mart8b,c,a. Immunoblotting demonstrated a single protein throughout all placental stages for Ldoc1/Mart7, but for Cxx1a,b,c/Mart8b,c,a a switch occurred from a 57 kDa protein at E10.5 and E14.5 to a 25 kDa protein at E16.5 and E18.5. CONCLUSIONS: RNA and protein detection of mouse Mart genes support neo-functionalization of retrotransposons in mammalian genomes. Undetectable expression of Zcchc5/Mart3, Zcchc16/Mart4 and Rgag1/Mart9 indicate no role during mouse placentogenesis. Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a gene expression support a role for differentiation from the ectoplacental cone. Mart antisense transcripts and protein alterations predict unique and complex molecular regulation in a time directed manner throughout mouse placentogenesis.


Subject(s)
Gene Expression , Placenta/embryology , RNA, Antisense/biosynthesis , RNA, Messenger/biosynthesis , Retroelements , Transcription, Genetic , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Mice, Inbred C3H , Mice, Inbred C57BL , Pregnancy , Real-Time Polymerase Chain Reaction
18.
Neuropathol Appl Neurobiol ; 41(2): 180-200, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24635849

ABSTRACT

AIMS: Adenohypophysis (AH) hormone-producing cells represent the origin of diverse groups of pituitary adenomas (PA). Deregulation of hypothalamic hormone receptors, growth factors and cAMP signalling have been implicated in the aetiology of PA. Endogenous retroviruses (ERVs) are derived from past exogenous retroviral infections and represent more than 8% of the human genome. Some ERV genes encode open reading frames and produce functional proteins, for example, the ERVW-1 envelope gene Syncytin-1, essential for placentogenesis, but also deregulated in human tumours. Data concerning ERV expression in the AH and related endocrine tumours are missing. METHODS: Syncytin-1 protein was analysed in normal AH (n = 15) and compared with five PA subtypes (n = 117) by immunohistochemistry. Absolute gene expression of 20 ERV functional envelope genes and ERVW-5 gag was measured. PA tissues were examined for Syncytin-1 and the cAMP signalling marker phospho-CREB-Ser133 using immunohistochemistry. Isolated primary human PA cells were treated with different hormones. Murine embryonic and adult pituitary gland ERV expressions were compared with human AH. RESULTS: Syncytin-1 protein colocalized with corticotropic cells of AH. In contrast, all PA demonstrated significant Syncytin-1 protein overexpression, supporting deregulation. All other ERV genes showed significant up-regulations in different PA subtypes. Phospho-CREB-Ser133 and Syncytin-1 colocalized in PA cells. Cultivated primary PA cells with ACTH or CRH induced their respective receptors and ERV genes. Syncytin-A/-B, murine orthologues to human Syncytin-1/-2, localized to embryonic and adult pituitary glands demonstrating functional mammalian conservation. CONCLUSIONS: Deregulated ERV genes may contribute to PA development via cAMP signalling.


Subject(s)
Adenoma/virology , Endogenous Retroviruses , Genes, Viral , Pituitary Gland/virology , Pituitary Neoplasms/virology , Adult , Animals , Female , Fluorescent Antibody Technique , Gene Products, env/biosynthesis , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Microscopy, Confocal , Pregnancy Proteins/biosynthesis , Real-Time Polymerase Chain Reaction
19.
Differentiation ; 85(4-5): 150-60, 2013.
Article in English | MEDLINE | ID: mdl-23807393

ABSTRACT

The murine placenta has a trichorial structure with two multinucleated syncytiotrophoblast (SCT) layers representing a barrier between the maternal and fetal blood system. Genes of endogenous retroviruses and retrotransposon-derived paternally expressed genes (Peg), remnants of past infections and integrations in the genome, have essential functions in placentogenesis. Previous studies showed that the envelope genes Syncytin-A and Syncytin-B were essential for cell-cell fusion of the SCT. The goal of this study was to analyze the temporal localization and expression of nine genes throughout placental development from embryonic day (E)8.5 to E18.5 using in situ-hybridization and absolute RNA-quantification. These included a comparison of previously characterized genes from the labyrinth Syncytin-A, Syncytin-B, Gcm1, the junctional zone PL-1, PL-2, Plf, Tpbpa with two further characterized genes Peg10 and Tpbpb. Syncytin-A and Syncytin-B RNA localized to SCT-I and SCT-II, respectively. Peg10 RNA localized to all extraembryonic tissues, specifically to the parietal and sinusoidal TGC of the labyrinth layer, which is in contact with SCT-I and the maternal blood. All three retroviral/retrotransposon-derived genes showed the highest expression at E16.5, but Peg10 with 188,917.1 molecules/ng cDNA was 208-fold and 106.8-fold higher expressed than Syncytin-A and Syncytin-B, respectively. Tpbpb localized to the junctional zone and showed the highest expression at E16.5 along with PL-2, Plf, Tpbpa, but not PL-1, which decreased in expression at E10.5. To investigate a role of Syncytin-A, Syncytin-B and Peg10 in cell-cell fusion, we established a cell culture system with fractionated primary trophoblasts from murine placentae. Culturing trophoblasts for up to 72h partly resembled trophoblast development in vivo according to the nine marker genes. Knockdown of Syncytin-A demonstrated a functional regulation of cell-cell fusion, where knockdown of Peg10 showed no involvement in cell fusion. Due to the expression of Peg10 in TGCs, we propose an essential functional role in the fetal-maternal blood system.


Subject(s)
Nuclear Proteins/metabolism , Placenta/cytology , Placentation , Pregnancy Proteins/metabolism , Transcription Factors/metabolism , Animals , Apoptosis Regulatory Proteins , Cell Fusion/methods , Cell Line , DNA-Binding Proteins , Endogenous Retroviruses/isolation & purification , Female , Gene Knockdown Techniques/methods , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Placenta/metabolism , Pregnancy , RNA-Binding Proteins , Trophoblasts/cytology , Trophoblasts/metabolism
20.
J Cell Biochem ; 113(7): 2383-96, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22573555

ABSTRACT

Cytotrophoblast (CT) cell fusion into a syncytiotrophoblast is obligatory for placentation and mediated by the human endogenous retrovirus (HERV)-W envelope gene Syncytin-1. Abnormal placentation is associated with preeclampsia (PE), HELLP and intrauterine growth restriction (IUGR). In placentogenesis, the MAP-kinase p38α regulates PPARγ/RXRα signaling and target genes, like leptin, resistin, ABCG2, and hCG. The aim of this study was to analyze PPARγ/RXRα signaling and target gene regulation using primary CT cultures, the trophoblastic cell line BeWo and placental tissues from patients with normal and abnormal placentation. CT from four different human control placentae and BeWo cells demonstrated that Syncytin-1, other signaling members and CT cell fusions were regulated with PPARγ/RXRα activators troglitazone and 9-cis retinoic acid, via protein kinase A and p38α inhibition. Significant discordant regulations between CTs and BeWo were found. Two PPARγ/RXRα-response-elements from upstream regulatory elements and the 5'LTR of HERV-W were confirmed with DNA-protein binding assays using nuclear extracts and recombinant PPARγ/RXRα proteins. These promoter elements were validated with luciferase assays in the presence of PPARγ/RXRα modulators. Furthermore, troglitazone or 9-cis retinoic acid treatment of siRNA-PPARγ and siRNA-RXRα transfected BeWo cells proved the requirement of these proteins for Syncytin-1 regulation. Thirty primary abnormal placentae from PE, HELLP and IUGR patients compared to 10 controls showed significant deregulation of leptin RNA and protein, p38α, phospho-p38α, PPARγ, ABCG2, INSL4 and Syncytin-1. Our study characterized PPARγ/RXRα signaling in human CT and cell fusions identifying Syncytin-1 as a new target gene. Based on these results, a disturbed PPARγ/RXRα pathway could contribute to pathological human pregnancies.


Subject(s)
Gene Products, env/metabolism , PPAR gamma/metabolism , Placentation/physiology , Pregnancy Proteins/metabolism , Retinoid X Receptor alpha/metabolism , Alitretinoin , Cell Fusion , Cell Line , Chromans/pharmacology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Endogenous Retroviruses/genetics , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Gene Expression Regulation , HELLP Syndrome/metabolism , HELLP Syndrome/pathology , Humans , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , PPAR gamma/genetics , Placenta/metabolism , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , RNA Interference , RNA, Small Interfering , Response Elements/genetics , Retinoid X Receptor alpha/genetics , Signal Transduction , Thiazolidinediones/pharmacology , Tretinoin/pharmacology , Troglitazone , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...