Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 361: 236-245, 2023 09.
Article in English | MEDLINE | ID: mdl-37437849

ABSTRACT

Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.


Subject(s)
Drug Delivery Systems , Skin , Humans , Administration, Cutaneous , Epidermis , Needles , Pharmaceutical Preparations , Risk Assessment , Clinical Trials, Phase III as Topic
2.
Int J Pharm ; 545(1-2): 215-228, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29684561

ABSTRACT

Epidermal powder immunization (EPI) is an alternative technique to the classical immunization route using needle and syringe. In this work, we present the results of an in vivo pilot study in piglets using a dried influenza model vaccine which was applied by EPI using a novel pyrotechnically driven applicator. A liquid influenza vaccine (Pandemrix®) was first concentrated by tangential flow filtration and hemagglutinin content was determined by RP-HPLC. The liquid formulation was then transformed into a dry powder by collapse freeze-drying and subsequent cryo-milling. The vaccine powder was attached to a membrane of a novel pyrotechnical applicator using oily adjuvant components. Upon actuation of the applicator, particles were accelerated to high speed as determined by a high-speed camera setup. Piglets were immunized twice using either the novel pyrotechnical applicator or classical intramuscular injection. Blood samples of the animals were collected at various time points and analyzed by enzyme-linked immunosorbent assay. Our pilot study shows that acceleration of a dried vaccine powder to supersonic speed using the pyrotechnical applicator is possible and that the speed and impact of the particles is sufficient to breach the stratum corneum of piglet skin. Importantly, the administration of the dry vaccine powder resulted in measurable anti-H1N1 antibody titres in vivo.


Subject(s)
Immunization/instrumentation , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Administration, Cutaneous , Animals , Animals, Newborn , Antibodies, Viral/blood , Biomarkers/blood , Drug Compounding , Epidermis , Freeze Drying , Immunization/methods , Immunization Schedule , Immunogenicity, Vaccine , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/metabolism , Injections, Intramuscular , Pilot Projects , Powders , Sus scrofa , Technology, Pharmaceutical/methods , Time Factors
3.
Carbohydr Res ; 337(21-23): 2089-110, 2002 Nov 19.
Article in English | MEDLINE | ID: mdl-12433474

ABSTRACT

Due to their high density of functional groups and their availability in a variety of diastereomeric forms, monosaccharides are considered attractive scaffolds for combinatorial chemistry that allow the attachment and defined spatial alignment of up to five different pharmacophoric groups. For their application in combinatorial syntheses on solid phase, a set of selectively removable hydroxy protecting groups in combination with a cleavable anchor is required. Herein, we report on the construction and use of a versatile multivalent glucose building block for parallel synthesis on the solid phase.


Subject(s)
Combinatorial Chemistry Techniques , Glucose/chemistry , Alkylation , Chromatography, High Pressure Liquid , Cross-Linking Reagents , Crystallography, X-Ray , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Thioglycosides/chemistry
4.
Angew Chem Int Ed Engl ; 37(18): 2503-2505, 1998 Oct 02.
Article in English | MEDLINE | ID: mdl-29711363

ABSTRACT

Four orthogonally stable protecting groups and a selectively cleavable anchor that are stable under basic conditions are required in order that carbohydrates can be employed as chiral polyfunctional scaffolds in combinatorial solid-phase syntheses of high diversity. The schematic representation shows the combinatorial synthesis with a carbohydrate scaffold (SG=protecting group, A=anchor, P=polymer carrier), which proceeds by sequential selective deprotection, functionalization, washing of the solid phase, and cleavage of the anchor.

SELECTION OF CITATIONS
SEARCH DETAIL
...