Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 63(1): 1-8, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38086054

ABSTRACT

CBP/p300 is a master transcriptional coactivator that regulates gene activation by interacting with multiple transcriptional activators. Dysregulation of protein-protein interactions (PPIs) between the CBP/p300 KIX domain and its activators is implicated in a number of cancers, including breast, leukemia, and colorectal cancer. However, KIX is typically considered "undruggable" because of its shallow binding surfaces lacking both significant topology and promiscuous binding profiles. We previously reported a dual-targeting peptide (MybLL-tide) that inhibits the KIX-Myb interaction with excellent specificity and potency. Here, we demonstrate a branched, second-generation analogue, CREBLL-tide, that inhibits the KIX-CREB PPI with higher potency and selectivity. Additionally, the best of these CREBLL-tide analogues shows excellent and selective antiproliferation activity in breast cancer cells. These results indicate that CREBLL-tide is an effective tool for assessing the role of KIX-activator interactions in breast cancer and expanding the dual-targeting strategy for inhibiting KIX and other coactivators that contain multiple binding surfaces.


Subject(s)
Breast Neoplasms , CREB-Binding Protein , Humans , Female , Binding Sites , Ligands , CREB-Binding Protein/chemistry , Transcription Factors/metabolism , Protein Binding , Transcriptional Activation , Breast Neoplasms/drug therapy
2.
Chembiochem ; 24(21): e202300439, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37525583

ABSTRACT

Natural products are often uniquely suited to modulate protein-protein interactions (PPIs) due to their architectural and functional group complexity relative to synthetic molecules. Here we demonstrate that the natural product garcinolic acid allosterically blocks the CBP/p300 KIX PPI network and displays excellent selectivity over related GACKIX motifs. It does so via a strong interaction (KD 1 µM) with a non-canonical binding site containing a structurally dynamic loop in CBP/p300 KIX. Garcinolic acid engages full-length CBP in the context of the proteome and in doing so effectively inhibits KIX-dependent transcription in a leukemia model. As the most potent small-molecule KIX inhibitor yet reported, garcinolic acid represents an important step forward in the therapeutic targeting of CBP/p300.


Subject(s)
CREB-Binding Protein , Protein Structure, Tertiary , Protein Domains , Binding Sites , Protein Binding , CREB-Binding Protein/chemistry
3.
J Org Chem ; 88(11): 7535-7538, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37137160

ABSTRACT

Two new compounds, 1,1,1-tri(thioacetyl)ethane and 1,1-di(thioacetyl)ethene, arose during reactions of acetyl methoxy(thiocarbonyl) sulfide with potassium methyl xanthate. Relevant mechanisms were elucidated, which in turn suggested novel streamlined routes to these same compounds. Several further transformations of the title compounds were demonstrated, suggesting their potential synthetic utility.

4.
J Am Chem Soc ; 143(37): 15056-15062, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34491719

ABSTRACT

The protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high-value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small-molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 5600-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome, leading to inhibition of key Myb·KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Peptides/pharmacology , Proto-Oncogene Proteins c-myb/metabolism , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Gene Expression Regulation/drug effects , Humans , Peptides/chemistry , Protein Binding , Protein Domains , Proto-Oncogene Proteins c-myb/genetics
5.
Nat Rev Drug Discov ; 20(9): 669-688, 2021 09.
Article in English | MEDLINE | ID: mdl-34006959

ABSTRACT

Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.


Subject(s)
Drug Discovery/methods , Molecular Targeted Therapy , Transcription Factors/metabolism , Animals , Gene Expression Regulation , Humans , Ligands , Proteolysis , Small Molecule Libraries
6.
Proc Natl Acad Sci U S A ; 117(44): 27346-27353, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33077600

ABSTRACT

A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.


Subject(s)
Transcription Factors/metabolism , Transcriptional Activation/genetics , Amino Acid Sequence/genetics , Humans , Mediator Complex/genetics , Mediator Complex/metabolism , Models, Molecular , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Transcriptional Activation/physiology
7.
Proc Natl Acad Sci U S A ; 115(36): 8960-8965, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30127017

ABSTRACT

Transcriptional coactivators are a molecular recognition marvel because a single domain within these proteins, the activator binding domain or ABD, interacts with multiple compositionally diverse transcriptional activators. Also remarkable is the structural diversity among ABDs, which range from conformationally dynamic helical motifs to those with a stable core such as a ß-barrel. A significant objective is to define conserved properties of ABDs that allow them to interact with disparate activator sequences. The ABD of the coactivator Med25 (activator interaction domain or AcID) is unique in that it contains secondary structural elements that are on both ends of the spectrum: helices and loops that display significant conformational mobility and a seven-stranded ß-barrel core that is structurally rigid. Using biophysical approaches, we build a mechanistic model of how AcID forms binary and ternary complexes with three distinct activators; despite its static core, Med25 forms short-lived, conformationally mobile, and structurally distinct complexes with each of the cognate partners. Further, ternary complex formation is facilitated by allosteric communication between binding surfaces on opposing faces of the ß-barrel. The model emerging suggests that the conformational shifts and cooperative binding is mediated by a flexible substructure comprised of two dynamic helices and flanking loops, indicating a conserved mechanistic model of activator engagement across ABDs. Targeting a region of this substructure with a small-molecule covalent cochaperone modulates ternary complex formation. Our data support a general strategy for the identification of allosteric small-molecule modulators of ABDs, which are key targets for mechanistic studies as well as therapeutic applications.


Subject(s)
Mediator Complex/antagonists & inhibitors , Mediator Complex/chemistry , Peptides/chemistry , Allosteric Regulation/physiology , Humans , Mediator Complex/metabolism , Protein Domains , Protein Structure, Quaternary , Protein Structure, Secondary
8.
J Org Chem ; 80(22): 11313-21, 2015 11 20.
Article in English | MEDLINE | ID: mdl-26418818

ABSTRACT

The Zumach-Weiss-Kühle (ZWK) reaction provides 1,2,4-dithiazolidine-3,5-diones [dithiasuccinoyl (Dts)-amines] by the rapid reaction of O-ethyl thiocarbamates plus (chlorocarbonyl)sulfenyl chloride, with ethyl chloride and hydrogen chloride being formed as coproducts, and carbamoyl chlorides or isocyanates generated as yield-diminishing byproducts. However, when the ZWK reaction is applied with (N-ethoxythiocarbonyl)urethane as the starting material, heterocyclization to the putative "Dts-urethane" does not occur. Instead, the reaction directly provides (chlorocarbonyl)(N-ethoxycarbonylcarbamoyl)disulfane, a reasonably stable crystalline compound; modified conditions stop at the (chlorocarbonyl)[1-ethoxy-(N-ethoxycarbonyl)formimidoyl]disulfane intermediate. The title (chlorocarbonyl)(carbamoyl)disulfane cannot be converted to the elusive Dts derivative, but rather gives (N-ethoxycarbonyl)carbamoyl chloride upon thermolysis, or (N-ethoxycarbonyl)isocyanate upon treatment with tertiary amines. Additional transformations of these compounds have been discovered, providing entries to both known and novel species. X-ray crystallographic structures are reported for the title (chlorocarbonyl)(carbamoyl)disulfane; for (methoxycarbonyl)(N-ethoxycarbonylcarbamoyl)disulfane, which is the corresponding adduct after quenching in methanol; for [1-ethoxy-(N-ethoxycarbonyl)formimidoyl](N'-methyl-N'-phenylcarbamoyl)disulfane, which is obtained by trapping the title intermediate with N-methylaniline; and for (N-ethoxycarbonylcarbamoyl)(N'-methyl-N'-phenylcarbamoyl)disulfane, which is a short-lived intermediate in the reaction of the title (chlorocarbonyl)(carbamoyl)disulfane with excess N-methylaniline. The new chemistry and structural information reported herein is expected to contribute to accurate modeling of the ZWK reaction trajectory.


Subject(s)
Carbamates/chemical synthesis , Sulfhydryl Compounds/chemical synthesis , Thiazolidinediones/chemical synthesis , Aniline Compounds/chemistry , Carbamates/chemistry , Crystallography, X-Ray , Isocyanates/chemistry , Molecular Structure , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry , Thiazolidinediones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL