Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Methods Mol Biol ; 2713: 347-361, 2024.
Article in English | MEDLINE | ID: mdl-37639135

ABSTRACT

Macrophage identity, as defined by epigenetic, transcriptional, proteomic, and functional programs, is greatly impacted by cues originating from the microenvironment. As a consequence, immunophenotyping based on surface marker expression is established and reliable in homeostatic conditions, whereas environmental challenges, in particular infections, severely hamper the determination of identity states. This has become more evident with recent discoveries that macrophage-inherent plasticity may go beyond limits of lineage-defining immunophenotypes. Therefore, transgenic fate mapping tools, such as the phage-derived loxP-cre-system, are essential for the analysis of macrophage adaptation in the tissue under extreme environmental conditions, for example, upon encounter with pathogens. In this chapter, we describe an advanced application of the loxP-cre-system during infection. Here, the host encodes a cell type-specific cre-recombinase, while the pathogen harbors a STOP-floxed fluorescent reporter gene. As an instructive example for the versatility of the system, we demonstrate that alveolar macrophages are predominantly targeted after respiratory tract infection with mouse cytomegalovirus (MCMV). Combined host-pathogen fate mapping not only enables to distinguish between infected and non-infected (bystander) macrophages but also spurs exploration of phenotypic adaptation and tracing of cellular localization in the context of MCMV infection. Moreover, we provide a gating strategy for resolving the diversity of pulmonary immune cell populations.


Subject(s)
Macrophages, Alveolar , Virus Diseases , Animals , Mice , Proteomics , Macrophages , Lung
2.
Vaccine ; 41(42): 6137-6142, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37699783

ABSTRACT

The European Society of Pediatric Infectious Diseases (ESPID) hosted the third Group B Streptococcus (GBS) Research Session in Athens on 11th May 2022, providing researchers and clinicians from around the world an opportunity to share and discuss recent advances in GBS pathophysiology, molecular and genetic epidemiology and how these new insights can help in improving prevention and control of early- and late-onset GBS disease. The meeting provided a state-of-the-art overview of the existing GBS prevention strategies and their limitations, and an opportunity to share the latest research findings. The first presentation provided an overview of current GBS prevention and treatment strategies. In the second presentation, the genomic and antimicrobial resistance profiles of invasive and colonizing GBS strains were presented. The third presentation explained the association of intrapartum antibiotic prophylaxis (IAP) with the development of late-onset disease (LOD) and the interplay of host innate immunity and GBS. The fourth presentation evaluated the role of genomics in understanding horizontal GBS transmission. The fifth presentation focused on the zoonotic links for certain GBS lineages and the last presentation described the protective role of breastmilk. Talks were followed with interactive discussions and concluded with recommendations on what is needed to further GBS clinical research; these included: (i) the development of better risk stratification methods by combining GBS virulence factors, serological biomarkers and clinical risk factors; (ii) further studies on the interplay of perinatal antimicrobials, disturbances in the development of host immunity and late-onset GBS disease; (iii) routine submission of GBS isolates to reference laboratories to help in detecting potential clusters by using genomic sequencing; (iv) collaboration in animal and human GBS studies to detect and prevent the emergence of new pathogenic sequence types; and (v) harnessing the plethora of immune factors in the breastmilk to develop adjunct therapies.

3.
Sci Immunol ; 8(86): eadg3517, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37566679

ABSTRACT

The skin needs to balance tolerance of colonizing microflora with rapid detection of potential pathogens. Flexible response mechanisms would seem most suitable to accommodate the dynamic challenges of effective antimicrobial defense and restoration of tissue homeostasis. Here, we dissected macrophage-intrinsic mechanisms and microenvironmental cues that tune macrophage signaling in localized skin infection with the colonizing and opportunistic pathogen Staphylococcus aureus. Early in skin infection, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by γδ T cells and hypoxic conditions within the dermal microenvironment diverted macrophages away from a homeostatic M-CSF- and hypoxia-inducible factor 1α (HIF-1α)-dependent program. This allowed macrophages to be metabolically rewired for maximal inflammatory activity, which requires expression of Irg1 and generation of itaconate, but not HIF-1α. This multifactorial macrophage rewiring program was required for both the timely clearance of bacteria and for the provision of local immune memory. These findings indicate that immunometabolic conditioning allows dermal macrophages to cycle between antimicrobial activity and protection against secondary infections.


Subject(s)
Macrophages , Staphylococcal Skin Infections , Humans , Cytokines/metabolism , Signal Transduction , Staphylococcal Skin Infections/metabolism
4.
Nat Commun ; 14(1): 2721, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169749

ABSTRACT

While the precise processes underlying a sex bias in the development of central nervous system (CNS) disorders are unknown, there is growing evidence that an early life immune activation can contribute to the disease pathogenesis. When we mimicked an early systemic viral infection or applied murine cytomegalovirus (MCMV) systemically in neonatal female and male mice, only male adolescent mice presented behavioral deficits, including reduced social behavior and cognition. This was paralleled by an increased amount of infiltrating T cells in the brain parenchyma, enhanced interferon-γ (IFNγ) signaling, and epigenetic reprogramming of microglial cells. These microglial cells showed increased phagocytic activity, which resulted in abnormal loss of excitatory synapses within the hippocampal brain region. None of these alterations were seen in female adolescent mice. Our findings underscore the early postnatal period's susceptibility to cause sex-dependent long-term CNS deficiencies following infections.


Subject(s)
Central Nervous System Diseases , Microglia , Animals , Female , Male , Mice , Microglia/pathology , Brain , Central Nervous System Diseases/pathology , Interferon-gamma/genetics , Epigenesis, Genetic
5.
Nat Commun ; 13(1): 7315, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36437276

ABSTRACT

The COVID-19 course and immunity differ in children and adults. We analyzed immune response dynamics in 28 families up to 12 months after mild or asymptomatic infection. Unlike adults, the initial response is plasmablast-driven in children. Four months after infection, children show an enhanced specific antibody response and lower but detectable spike 1 protein (S1)-specific B and T cell responses than their parents. While specific antibodies decline, neutralizing antibody activity and breadth increase in both groups. The frequencies of S1-specific B and T cell responses remain stable. However, in children, one year after infection, an increase in the S1-specific IgA class switch and the expression of CD27 on S1-specific B cells and T cell maturation are observed. These results, together with the enhanced neutralizing potential and breadth of the specific antibodies, suggest a progressive maturation of the S1-specific immune response. Hence, the immune response in children persists over 12 months but dynamically changes in quality, with progressive neutralizing, breadth, and memory maturation. This implies a benefit for booster vaccination in children to consolidate memory formation.


Subject(s)
COVID-19 , Adult , Child , Humans , SARS-CoV-2 , Antibody Formation , Antibodies, Neutralizing , Immunization, Secondary
6.
Cell Rep Methods ; 2(8): 100260, 2022 08 22.
Article in English | MEDLINE | ID: mdl-36046625

ABSTRACT

Tissue-resident macrophages (TRMs) perform organ-specific functions that are dependent on factors such as hematopoietic origin, local environment, and biological influences. A diverse range of in vitro culture systems have been developed to decipher TRM functions, including bone marrow-derived macrophages (BMDMs), induced pluripotent stem cell (iPSC)-derived TRMs, or immortalized cell lines. However, despite the usefulness of such systems, there are notable limitations. Attempts to culture primary macrophages often require purification of cells and lack a high cell yield and consistent phenotype. Here, we aimed to address these limitations by establishing an organotypic primary cell culture protocol. We obtained long-term monocultures of macrophages derived from distinct organs without prior purification using specific growth factors and tissue normoxic conditions that largely conserved a TRM-like identity in vitro. Thus, this organotypic system offers an ideal screening platform for primary macrophages from different organs that can be used for a wide range of assays and readouts.


Subject(s)
Induced Pluripotent Stem Cells , Microphysiological Systems , Cell Differentiation/genetics , Macrophages , Histiocytes
7.
EBioMedicine ; 84: 104245, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36155957

ABSTRACT

BACKGROUND: Long COVID in children and adolescents remains poorly understood due to a lack of well-controlled studies with long-term follow-up. In particular, the impact of the family context on persistent symptoms following SARS-CoV-2 infection remains unknown. We examined long COVID symptoms in a cohort of infected children, adolescents, and adults and their exposed but non-infected household members approximately 1 year after infection and investigated clustering of persistent symptoms within households. METHODS: 1267 members of 341 households (404 children aged <14 years, 140 adolescents aged 14-18 years and 723 adults) were categorized as having had either a SARS-CoV-2 infection or household exposure to SARS-CoV-2 without infection, based on three serological assays and history of laboratory-confirmed infection. Participants completed questionnaires assessing the presence of long COVID symptoms 11-12 months after infection in the household using online questionnaires. FINDINGS: The prevalence of moderate or severe persistent symptoms was statistically significantly higher in infected than in exposed women (36.4% [95% CI: 30.7-42.4%] vs 14.2% [95% CI: 8.7-21.5%]), infected men (22.9% [95% CI: 17.9-28.5%] vs 10.3% [95% CI: 5.8-16.9%]) and infected adolescent girls (32.1% 95% CI: 17.2-50.5%] vs 8.9% [95%CI: 3.1-19.8%]). However, moderate or severe persistent symptoms were not statistically more common in infected adolescent boys aged 14-18 (9.7% [95% CI: 2.8-23.6%] or in infected children <14 years (girls: 4.3% [95% CI: 1.2-11.0%]; boys: 3.7% [95% CI: 1.1-9.6%]) than in their exposed counterparts (adolescent boys: 0.0% [95% CI: 0.0-6.7%]; girls < 14 years: 2.3% [95% CI: 0·7-6·1%]; boys < 14 years: 0.0% [95% CI: 0.0-2.0%]). The number of persistent symptoms reported by individuals was associated with the number of persistent symptoms reported by their household members (IRR=1·11, p=·005, 95% CI [1.03-1.20]). INTERPRETATION: In this controlled, multi-centre study, infected men, women and adolescent girls were at increased risk of negative outcomes 11-12 months after SARS-CoV-2 infection. Amongst non-infected adults, prevalence of negative outcomes was also high. Prolonged symptoms tended to cluster within families, suggesting family-level interventions for long COVID could prove useful. FUNDING: Ministry of Science, Research and the Arts, Baden-Württemberg, Germany.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/complications , COVID-19/epidemiology , Child , Female , Humans , Male , Parents , Prospective Studies , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
8.
Front Microbiol ; 13: 857965, 2022.
Article in English | MEDLINE | ID: mdl-35602077

ABSTRACT

An association between certain ABO/Rh blood groups and susceptibility to SARS-CoV-2 infection has been proposed for adults, although this remains controversial. In children and adolescents, the relationship is unclear due to a lack of robust data. Here, we investigated the association of ABO/Rh blood groups and SARS-CoV-2 in a multi-center study comprising 163 households with 281 children and 355 adults and at least one SARS-CoV-2 seropositive individual as determined by three independent assays as a proxy for previous infection. In line with previous findings, we found a higher frequency of blood group A (+ 6%) and a lower frequency of blood group O (-6%) among the SARS-CoV-2 seropositive adults compared to the seronegative ones. This trend was not seen in children. In contrast, SARS-CoV-2 seropositive children had a significantly lower frequency of Rh-positive blood groups. ABO compatibility did not seem to play a role in SARS-CoV-2 transmission within the families. A correction for family clusters was performed and estimated fixed effects of the blood group on the risk of SARS-CoV-2 seropositivity and symptomatic infection were determined. Although we found a different distribution of blood groups in seropositive individuals compared to the reference population, the risk of SARS-CoV-2 seropositivity or symptomatic infection was not increased in children or in adults with blood group A or AB versus O or B. Increasing age was the only parameter positively correlating with the risk of SARS-CoV-2 infection. In conclusion, specific ABO/Rh blood groups and ABO compatibility appear not to predispose for SARS-CoV-2 susceptibility in children.

9.
Eur J Immunol ; 52(9): 1419-1430, 2022 09.
Article in English | MEDLINE | ID: mdl-35551651

ABSTRACT

Innate immunity facilitates immediate defense against invading pathogens throughout all organs and tissues but also mediates tissue homeostasis and repair, thereby playing a key role in health and development. Recognition of pathogens is mediated by germline-encoded PRRs. Depending on the specific PRRs triggered, ligand binding leads to phagocytosis and pathogen killing and the controlled release of immune-modulatory factors such as IFNs, cytokines, or chemokines. PRR-mediated and other innate immune responses do not only prevent uncontrolled replication of intruding pathogens but also contribute to the tailoring of an effective adaptive immune response. Therefore, hereditary or acquired immunodeficiencies impairing innate responses may paradoxically cause severe immunopathology in patients. This can occur in the context of, but also independently of an increased microbial burden. It can include pathogen-dependent organ damage, autoinflammatory syndromes, and neurodevelopmental or neurodegenerative diseases. Here, we discuss the current state of research of several different such immune paradoxes. Understanding the underlying mechanisms causing immunopathology as a consequence of failures of innate immunity may help to prevent life-threatening disease.


Subject(s)
Immunologic Deficiency Syndromes , Receptors, Pattern Recognition , Adaptive Immunity , Cytokines/metabolism , Humans , Immunity, Innate
10.
Cell Metab ; 34(5): 747-760.e6, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508110

ABSTRACT

Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.


Subject(s)
Cues , Killer Cells, Natural , Adipocytes/metabolism , Immunity , Interferon-gamma/metabolism
11.
EMBO Rep ; 23(5): e54096, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35357743

ABSTRACT

Immunoregulation of inflammatory, infection-triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub-Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL-10 and the lipid mediator PGE2 . These act in concert, converting naive CD4+ T cells into CD127- CD25hi FoxP3+ CTLA-4+ Tregs, through the G protein-coupled receptors EP2 and EP4 and the IL-10 receptor. Moreover, while viable cyst products strongly upregulate IL-10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro-inflammatory microglia and TGF-ß as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL-10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2 -IL-10 axis and targeting TGF-ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.


Subject(s)
Cysts , Dinoprostone , Child , Dinoprostone/pharmacology , Humans , Interleukin-10 , Monocytes , Oxidoreductases , T-Lymphocytes, Regulatory
12.
mSphere ; 7(1): e0080821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019670

ABSTRACT

Meconium constitutes infants' first bowel movements postnatally. The consistency and microbial load of meconium are different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with negative health outcomes, but its composition is not well described, especially in preterm infants. Here, we characterized the meconium microbiomes from 330 very preterm infants (gestational ages 28 to 32 weeks) from 15 hospitals in Germany and in fecal samples from a subset of their mothers (N = 217). Microbiome profiles were compiled using 16S rRNA gene sequencing with negative and positive controls. The meconium microbiome was dominated by Bifidobacterium, Staphylococcus, and Enterococcus spp. and was associated with gestational age at birth and age at sample collection. Bifidobacterial abundance was negatively correlated with potentially pathogenic genera. The amount of bacterial DNA in meconium samples varied greatly across samples and was associated with the time since birth but not with gestational age or hospital site. In samples with low bacterial load, human mitochondrial sequences were highly amplified using commonly used, bacterial-targeted 16S rRNA primers. Only half of the meconium samples contained sufficient bacterial material to study the microbiome using a standard approach. To facilitate future meconium studies, we present a five-level scoring system ("MecBac") that predicts the success of 16S rRNA bacterial sequencing for meconium samples. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies. IMPORTANCE Meconium is present in the intestines of infants before and after birth and constitutes their first bowel movements postnatally. The consistency, composition and microbial load of meconium is largely different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with short-term and long-term negative health outcomes, but its composition is not yet well described, especially in preterm infants. We provide a characterization of the microbiome structure and composition of infant meconium and maternal feces from a large study cohort and propose a method to evaluate meconium samples for bacterial sequencing suitability. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies.


Subject(s)
Meconium , Microbiota , Adult , Bacteria/genetics , Bifidobacterium/genetics , Germany , Humans , Infant , Infant, Newborn , Infant, Premature , Meconium/microbiology , RNA, Ribosomal, 16S/genetics
13.
Nat Commun ; 13(1): 128, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013206

ABSTRACT

The quality and persistence of children's humoral immune response following SARS-CoV-2 infection remains largely unknown but will be crucial to guide pediatric SARS-CoV-2 vaccination programs. Here, we examine 548 children and 717 adults within 328 households with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. We assess serological response at 3-4 months and 11-12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. Neutralization against wild type SARS-CoV-2 and the Delta VOC are analysed in a pseudotyped virus assay. Children, compared to adults, are five times more likely to be asymptomatic, and have higher specific antibody levels which persist longer (96.2% versus 82.9% still seropositive 11-12 months post infection). Of note, symptomatic and asymptomatic infections induce similar humoral responses in all age groups. SARS-CoV-2 infection occurs independent of HCoV serostatus. Neutralization responses of children and adults are similar, although neutralization is reduced for both against the Delta VOC. Overall, the long-term humoral immune response to SARS-CoV-2 infection in children is of longer duration than in adults even after asymptomatic infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antigens, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Female , Humans , Infant , Male , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
14.
Emerg Infect Dis ; 27(12): 3009-3019, 2021 12.
Article in English | MEDLINE | ID: mdl-34695369

ABSTRACT

Resolving the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in households with members from different generations is crucial for containing the current pandemic. We conducted a large-scale, multicenter, cross-sectional seroepidemiologic household transmission study in southwest Germany during May 11-August 1, 2020. We included 1,625 study participants from 405 households that each had ≥1 child and 1 reverse transcription PCR-confirmed SARS-CoV-2-infected index case-patient. The overall secondary attack rate was 31.6% and was significantly higher in exposed adults (37.5%) than in children (24.6%-29.2%; p = <0.015); the rate was also significantly higher when the index case-patient was >60 years of age (72.9%; p = 0.039). Other risk factors for infectiousness of the index case-patient were SARS-CoV-2-seropositivity (odds ratio [OR] 27.8, 95% CI 8.26-93.5), fever (OR 1.93, 95% CI 1.14-3.31), and cough (OR 2.07, 95% CI 1.21-3.53). Secondary infections in household contacts generate a substantial disease burden.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Cross-Sectional Studies , Germany/epidemiology , Humans , Seroepidemiologic Studies
15.
BMC Infect Dis ; 21(1): 946, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521371

ABSTRACT

BACKGROUND: The microbiological diagnosis of pulmonary tuberculosis (Tb) in a pediatric population is hampered by both low pathogen burden and noncompliance with sputum sampling. Although endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has been found useful for the evaluation of mediastinal pathologies in adults, for children, sparse data are available. Here, we have evaluated EBUS-TBNA as a diagnostic procedure in children and adolescents with suspected pulmonary Tb. METHODS: In this retrospective analysis, we reviewed the charts of unaccompanied refugee minors (URM) who were admitted between January 2016 and July 2018 and who, during their initial medical screening upon arrival in Germany, were found to have abnormal radiological pulmonary and mediastinal findings and/or immunological results indicative of Tb. For each patient, basic sociodemographic data, clinical features and data on diagnostic procedures performed were assessed. These included imaging, immunodiagnostic tests and microbiological data derived from sputum, bronchoalveolar lavage, EBUS-TBNA, bronchoscopy and pleural fluid sampling. All patients who underwent invasive sampling procedures were included in the study. RESULTS: Out of 42 URM with suspected Tb, 34 fulfilled the study's inclusion criteria. Ages ranged from 14 to 17 years. All were of African origin, with 70.0% coming from Somalia, Eritrea and Ethiopia. Among the 21 patients for whom EBUS-TBNA was performed, the diagnostic yield was high: 66.7% positive results (MTb detected either by acid-fast stain, culture or PCR in 4.8, 42.9 and 61.9% of samples, respectively). Multidrug-resistant MTb was found in two patients from Somalia. No complications were associated with the procedure. Overall, pulmonary Tb was diagnosed in 29 patients (85.3%), miliary Tb in two patients (5.9%) and latent Tb in three patients (8.8%). CONCLUSIONS: EBUS-TBNA is a sensitive and safe method with high diagnostic yield in the evaluation of pediatric patients with mediastinal pathology and suspected Tb.


Subject(s)
Endoscopic Ultrasound-Guided Fine Needle Aspiration , Tuberculosis, Pulmonary , Adolescent , Adult , Bronchoscopy , Child , Humans , Lymph Nodes , Mediastinum , Retrospective Studies , Tuberculosis, Pulmonary/diagnosis
16.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34115982

ABSTRACT

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Subject(s)
Cytomegalovirus/physiology , Macrophages, Alveolar/virology , Animals , Antigen Presentation , Bystander Effect , Cell Cycle , Cell Line, Transformed , Cellular Reprogramming , Cytomegalovirus/pathogenicity , Cytomegalovirus/ultrastructure , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Green Fluorescent Proteins/metabolism , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/ultrastructure , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , Stem Cells/pathology , Virus Replication/physiology , Wnt Signaling Pathway
17.
Front Immunol ; 12: 617925, 2021.
Article in English | MEDLINE | ID: mdl-34149682

ABSTRACT

Group B Streptococcus (GBS) is a common intestinal colonizer during the neonatal period, but also may cause late-onset sepsis or meningitis in up to 0.5% of otherwise healthy colonized infants after day 3 of life. Transmission routes and risk factors of this late-onset form of invasive GBS disease (iGBS) are not fully understood. Cases of iGBS with recurrence (n=25) and those occurring in parallel in twins/triplets (n=32) from the UK and Ireland (national surveillance study 2014/15) and from Germany and Switzerland (retrospective case collection) were analyzed to unravel shared (in affected multiples) or fixed (in recurrent disease) risk factors for GBS disease. The risk of iGBS among infants from multiple births was high (17%), if one infant had already developed GBS disease. The interval of onset of iGBS between siblings was 4.5 days and in recurrent cases 12.5 days. Disturbances of the individual microbiome, including persistence of infectious foci are suggested e.g. by high usage of perinatal antibiotics in mothers of affected multiples, and by the association of an increased risk of recurrence with a short term of antibiotics [aOR 4.2 (1.3-14.2), P=0.02]. Identical GBS serotypes in both recurrent infections and concurrently infected multiples might indicate a failed microbiome integration of GBS strains that are generally regarded as commensals in healthy infants. The dynamics of recurrent GBS infections or concurrent infections in multiples suggest individual patterns of exposure and fluctuations in host immunity, causing failure of natural niche occupation.


Subject(s)
Anti-Bacterial Agents/adverse effects , Drug-Related Side Effects and Adverse Reactions/epidemiology , Dysbiosis/epidemiology , Sepsis/epidemiology , Streptococcal Infections/epidemiology , Streptococcus/physiology , Age of Onset , Anti-Bacterial Agents/therapeutic use , Dysbiosis/etiology , Europe/epidemiology , Female , Humans , Infant, Newborn , Male , Microbiota , Pregnancy , Pregnancy Complications, Infectious , Recurrence , Retrospective Studies , Risk Factors , Triplets , Twins
18.
Elife ; 102021 05 25.
Article in English | MEDLINE | ID: mdl-34032570

ABSTRACT

At the transition from intrauterine to postnatal life, drastic alterations are mirrored by changes in cellular immunity. These changes are in part immune cell intrinsic, originate in the replacement of fetal cells, or result from global regulatory mechanisms and adaptation to changes in the tissue microenvironment. Overall, longer developmental trajectories are intersected by events related to mother-infant separation, birth cues, acquisition of microbiota and metabolic factors. Perinatal alterations particularly affect immune niches, where structures with discrete functions meet, the intestinal mucosa, epidermis and lung. Accordingly, the following questions will be addressed in this review.How does the preprogrammed development supported by endogenous cues, steer innate immune cell differentiation, adaptation to tissue structures, and immunity to infection?How does the transition at birth impact on tissue immune make-up including its topology?How do postnatal cues guide innate immune cell differentiation and function at immunological niches?


Subject(s)
Immunity, Innate , Female , Homeostasis , Humans , Immune System/cytology , Immune System/embryology , Immune System/growth & development , Infant, Newborn , Inflammation/immunology , Microbiota , Pregnancy
19.
Front Cell Dev Biol ; 9: 628991, 2021.
Article in English | MEDLINE | ID: mdl-33842458

ABSTRACT

The cellular formation of reactive oxygen species (ROS) represents an evolutionary ancient antimicrobial defense system against microorganisms. The NADPH oxidases (NOX), which are predominantly localized to endosomes, and the electron transport chain in mitochondria are the major sources of ROS. Like any powerful immunological process, ROS formation has costs, in particular collateral tissue damage of the host. Moreover, microorganisms have developed defense mechanisms against ROS, an example for an arms race between species. Thus, although NOX orthologs have been identified in organisms as diverse as plants, fruit flies, rodents, and humans, ROS functions have developed and diversified to affect a multitude of cellular properties, i.e., far beyond direct antimicrobial activity. Here, we focus on the development of NOX in phagocytic cells, where the so-called respiratory burst in phagolysosomes contributes to the elimination of ingested microorganisms. Yet, NOX participates in cellular signaling in a cell-intrinsic and -extrinsic manner, e.g., via the release of ROS into the extracellular space. Accordingly, in humans, the inherited deficiency of NOX components is characterized by infections with bacteria and fungi and a seemingly independently dysregulated inflammatory response. Since ROS have both antimicrobial and immunomodulatory properties, their tight regulation in space and time is required for an efficient and well-balanced immune response, which allows for the reestablishment of tissue homeostasis. In addition, distinct NOX homologs expressed by non-phagocytic cells and mitochondrial ROS are interlinked with phagocytic NOX functions and thus affect the overall redox state of the tissue and the cellular activity in a complex fashion. Overall, the systematic and comparative analysis of cellular ROS functions in organisms of lower complexity provides clues for understanding the contribution of ROS and ROS deficiency to human health and disease.

20.
Front Pediatr ; 9: 613292, 2021.
Article in English | MEDLINE | ID: mdl-33898355

ABSTRACT

Introduction: The outbreak of the novel coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a range of emergency measures worldwide. Early in the pandemic, children were suspected to act as drivers of the COVID-19 spread in the population, which was based on experiences with influenza virus and other respiratory pathogens. Consequently, closures of schools and kindergartens were implemented in many countries around the world, alongside with other non-pharmaceutical interventions for transmission control. Given the grave and multifaceted consequences of contact restriction measures for children, it is crucial to better understand the effect size of these incisive actions for the COVID-19 pandemic. Therefore, we systematically review the current evidence on transmission of SARS-CoV-2 to and by children. Data Sources: PubMed and preprints uploaded on medRxiv. Study Selection: Original research articles, case reports, brief communications, and commentaries were included into the analysis. Each title or abstract was independently reviewed to identify relevant articles. Studies in other languages than English were not included. Data Extraction: Two reviewers independently reviewed the selected studies. Extracted data included citation of each study, type of healthcare setting, location of the study, characteristics of patient population, and reported outcomes. Results: Data on transmission of SARS-CoV-2 on or by children is scarce. Several studies show a lower seropositivity of children compared to adults, suggesting a lower susceptibility of especially younger children. Most insight currently comes from household studies suggesting, that children are predominantly infected by their household contacts. The contagiousness however, seems to be comparable between children and adults, based on our meta-analysis of included studies. Conclusions: Larger and systematic studies are urgently needed to better understand the age dependent patterns of SARS-CoV-2 transmission and thereby design more effective non-pharmaceutical interventions to reduce disease transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...