Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561223

ABSTRACT

Through the increase in the capacity of sequencing machines massively parallel sequencing of thousands of samples in a single run is now possible. With the improved throughput and resulting drop in the price of sequencing, the cost and time for preparation of sequencing libraries have become the major bottleneck in large-scale experiments. Methods using a hyperactive variant of the Tn5 transposase efficiently generate libraries starting from cDNA or genomic DNA in a few hours and are highly scalable. For genome sequencing, however, the time and effort spent on genomic DNA isolation limit the practicability of sequencing large numbers of samples. Here, we describe a highly scalable method for preparing high-quality whole-genome sequencing libraries directly from Saccharomyces cerevisiae cultures in less than 3 h at 34 cents per sample. We skip the rate-limiting step of genomic DNA extraction by directly tagmenting lysed yeast spheroplasts and add a nucleosome release step prior to enrichment PCR to improve the evenness of genomic coverage. Resulting libraries do not show any GC bias and are comparable in quality to libraries processed from genomic DNA with a commercially available Tn5-based kit. We use our protocol to investigate CRISPR/Cas9 on- and off-target edits and reliably detect edited variants and shared polymorphisms between strains. Our protocol enables rapid preparation of unbiased and high-quality, sequencing-ready indexed libraries for hundreds of yeast strains in a single day at a low price. By adjusting individual steps of our workflow, we expect that our protocol can be adapted to other organisms.


Subject(s)
High-Throughput Nucleotide Sequencing , Saccharomyces cerevisiae , DNA , Gene Library , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA , Whole Genome Sequencing
2.
Nat Biotechnol ; 39(6): 705-716, 2021 06.
Article in English | MEDLINE | ID: mdl-33361824

ABSTRACT

In coronavirus disease 2019 (COVID-19), hypertension and cardiovascular diseases are major risk factors for critical disease progression. However, the underlying causes and the effects of the main anti-hypertensive therapies-angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)-remain unclear. Combining clinical data (n = 144) and single-cell sequencing data of airway samples (n = 48) with in vitro experiments, we observed a distinct inflammatory predisposition of immune cells in patients with hypertension that correlated with critical COVID-19 progression. ACEI treatment was associated with dampened COVID-19-related hyperinflammation and with increased cell intrinsic antiviral responses, whereas ARB treatment related to enhanced epithelial-immune cell interactions. Macrophages and neutrophils of patients with hypertension, in particular under ARB treatment, exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1. Although the limited size of our cohort does not allow us to establish clinical efficacy, our data suggest that the clinical benefits of ACEI treatment in patients with COVID-19 who have hypertension warrant further investigation.


Subject(s)
COVID-19 Drug Treatment , Chemokine CCL3/genetics , Chemokine CCL4/genetics , Hypertension/drug therapy , Receptors, CCR1/genetics , Adult , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/complications , COVID-19/genetics , COVID-19/virology , Disease Progression , Female , Gene Expression Regulation/drug effects , Humans , Hypertension/complications , Hypertension/genetics , Hypertension/pathology , Inflammation/complications , Inflammation/drug therapy , Inflammation/genetics , Inflammation/virology , Male , Middle Aged , RNA-Seq , Respiratory System/drug effects , Respiratory System/pathology , Respiratory System/virology , Risk Factors , SARS-CoV-2/pathogenicity , Single-Cell Analysis
3.
Nat Biotechnol ; 38(8): 970-979, 2020 08.
Article in English | MEDLINE | ID: mdl-32591762

ABSTRACT

To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand-receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19.


Subject(s)
Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiratory System/pathology , Single-Cell Analysis , Transcriptome , Adult , Aged , Angiotensin-Converting Enzyme 2 , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Cell Communication , Cell Differentiation , Coronavirus Infections/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immune System/pathology , Inflammation/immunology , Inflammation/pathology , Longitudinal Studies , Male , Middle Aged , Nasopharynx/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/virology , Respiratory System/immunology , Respiratory System/virology , Severity of Illness Index
4.
EMBO J ; 39(10): e105114, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32246845

ABSTRACT

The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.


Subject(s)
Bronchi/cytology , Gene Expression , Lung/cytology , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , Single-Cell Analysis , Adult , Aging , Angiotensin-Converting Enzyme 2 , Bronchi/metabolism , COVID-19 , Cells, Cultured , Chronic Disease/epidemiology , Coronavirus Infections/genetics , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Germany , Goblet Cells/metabolism , Humans , Lung/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/genetics , Reference Standards , Sequence Analysis, RNA , Sex Characteristics , Smoking , Tissue Banks
5.
Genome Res ; 29(12): 1974-1984, 2019 12.
Article in English | MEDLINE | ID: mdl-31740578

ABSTRACT

Cryptic transcription is widespread and generates a heterogeneous group of RNA molecules of unknown function. To improve our understanding of cryptic transcription, we investigated their transcription start site (TSS) usage, chromatin organization, and posttranscriptional consequences in Saccharomyces cerevisiae We show that TSSs of chromatin-sensitive internal cryptic transcripts retain comparable features of canonical TSSs in terms of DNA sequence, directionality, and chromatin accessibility. We define the 5' and 3' boundaries of cryptic transcripts and show that, contrary to RNA degradation-sensitive ones, they often overlap with the end of the gene, thereby using the canonical polyadenylation site, and associate to polyribosomes. We show that chromatin-sensitive cryptic transcripts can be recognized by ribosomes and may produce truncated polypeptides from downstream, in-frame start codons. Finally, we confirm the presence of the predicted polypeptides by reanalyzing N-terminal proteomic data sets. Our work suggests that a fraction of chromatin-sensitive internal cryptic promoters initiates the transcription of alternative truncated mRNA isoforms. The expression of these chromatin-sensitive isoforms is conserved from yeast to human, expanding the functional consequences of cryptic transcription and proteome complexity.


Subject(s)
Chromatin , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Initiation Site , Chromatin/genetics , Chromatin/metabolism , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Stability , RNA, Fungal/biosynthesis , RNA, Fungal/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
PLoS Biol ; 17(3): e3000182, 2019 03.
Article in English | MEDLINE | ID: mdl-30925180

ABSTRACT

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Subject(s)
Biological Evolution , Escherichia coli/metabolism , Humans , Models, Genetic , Mutation/genetics , Saccharomyces cerevisiae/metabolism , Temperature
7.
G3 (Bethesda) ; 8(1): 79-89, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29118030

ABSTRACT

Efficient preparation of high-quality sequencing libraries that well represent the biological sample is a key step for using next-generation sequencing in research. Tn5 enables fast, robust, and highly efficient processing of limited input material while scaling to the parallel processing of hundreds of samples. Here, we present a robust Tn5 transposase purification strategy based on an N-terminal His6-Sumo3 tag. We demonstrate that libraries prepared with our in-house Tn5 are of the same quality as those processed with a commercially available kit (Nextera XT), while they dramatically reduce the cost of large-scale experiments. We introduce improved purification strategies for two versions of the Tn5 enzyme. The first version carries the previously reported point mutations E54K and L372P, and stably produces libraries of constant fragment size distribution, even if the Tn5-to-input molecule ratio varies. The second Tn5 construct carries an additional point mutation (R27S) in the DNA-binding domain. This construct allows for adjustment of the fragment size distribution based on enzyme concentration during tagmentation, a feature that opens new opportunities for use of Tn5 in customized experimental designs. We demonstrate the versatility of our Tn5 enzymes in different experimental settings, including a novel single-cell polyadenylation site mapping protocol as well as ultralow input DNA sequencing.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing/methods , Point Mutation , Recombinant Fusion Proteins/genetics , Transposases/genetics , Base Sequence , Cloning, Molecular/methods , DNA/genetics , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , High-Throughput Nucleotide Sequencing/economics , Humans , Polyadenylation , Protein Binding , Recombinant Fusion Proteins/metabolism , Transposases/metabolism
8.
Nat Cell Biol ; 19(4): 271-281, 2017 04.
Article in English | MEDLINE | ID: mdl-28319093

ABSTRACT

Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early differentiation of human HSCs towards lineage commitment. During homeostasis, individual HSCs gradually acquire lineage biases along multiple directions without passing through discrete hierarchically organized progenitor populations. Instead, unilineage-restricted cells emerge directly from a 'continuum of low-primed undifferentiated haematopoietic stem and progenitor cells' (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to control stemness, early lineage priming and the subsequent progression into all major branches of haematopoiesis. These data reveal a continuous landscape of human steady-state haematopoiesis downstream of HSCs and provide a basis for the understanding of haematopoietic malignancies.


Subject(s)
Cell Lineage , Hematopoietic Stem Cells/cytology , Adult , Animals , Antigens, CD/metabolism , Cell Lineage/genetics , Cell Proliferation/genetics , Female , Gene Regulatory Networks , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Models, Biological , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Transcriptome/genetics
9.
Transcription ; 4(3): 97-101, 2013.
Article in English | MEDLINE | ID: mdl-23665541

ABSTRACT

The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.


Subject(s)
Chromatin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Nucleosomes/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA, Untranslated/metabolism , Transcription, Genetic , Yeasts/genetics , Yeasts/metabolism
10.
EMBO Rep ; 13(11): 997-1003, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23032292

ABSTRACT

Chromatin organization is essential for defining transcription units and maintaining genomic integrity in eukaryotes. In this study, we found that deletion of the Schizosaccharomyces pombe Chd1 chromatin remodelers, hrp1 and hrp3, causes strong, genome-wide accumulation of antisense transcripts. Nucleosome mapping revealed a specific role for Chd1 remodelers in the positioning of nucleosomes in gene coding regions. Other mutations associated with enhanced cryptic transcription activity, such as set2Δ, alp13Δ and FACT complex subunit pob3Δ, did not, or only mildly, affect nucleosome positioning. These data indicate several mechanisms in the repression of cryptic promoter activity in eukaryotic cells.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Nucleosomes/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Transcription, Genetic , Adenosine Triphosphatases/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Gene Deletion , Genome, Fungal , Histone-Lysine N-Methyltransferase/genetics , Nucleosomes/metabolism , RNA, Antisense/biosynthesis , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Eur J Hum Genet ; 18(12): 1310-4, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20648051

ABSTRACT

Mesomelic dysplasia Kantaputra type (MDK) is characterized by marked mesomelic shortening of the upper and lower limbs originally described in a Thai family. To identify the cause of MDK, we performed array CGH and identified two microduplications on chromosome 2 (2q31.1-q31.2) encompassing ∼481 and 507 kb, separated by a segment of normal copy number. The more centromeric duplication encompasses the entire HOXD cluster, as well as the neighboring genes EVX2 and MTX2. The breakpoints of the duplication localize to the same region as the previously identified inversion of the mouse mutant ulnaless (Ul), which has a similar phenotype as MDK. We propose that MDK is caused by duplications that modify the topography of the locus and as such result in deregulation of HOXD gene expression.


Subject(s)
Genes, Homeobox/genetics , Genetic Loci/genetics , Animals , Base Pairing/genetics , Bone Diseases, Developmental/genetics , Chromosomes, Human, Pair 2/genetics , Comparative Genomic Hybridization , Fibula/abnormalities , Foot Deformities/genetics , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Radius/abnormalities , Trisomy/genetics , Ulna/abnormalities
12.
Am J Hum Genet ; 86(3): 434-9, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20170896

ABSTRACT

Autosomal-dominant brachydactyly type E (BDE) is a congenital limb malformation characterized by small hands and feet predominantly as a result of shortened metacarpals and metatarsals. In a large pedigree with BDE, short stature, and learning disabilities, we detected a microdeletion of approximately 900 kb encompassing PTHLH, the gene coding for parathyroid hormone related protein (PTHRP). PTHRP is known to regulate the balance between chondrocyte proliferation and the onset of hypertrophic differentiation during endochondral bone development. Inactivation of Pthrp in mice results in short-limbed dwarfism because of premature differentiation of chondrocyte. On the basis of our initial finding, we tested further individuals with BDE and short stature for mutations in PTHLH. We identified two missense (L44P and L60P), a nonstop (X178WextX( *)54), and a nonsense (K120X) mutation. The missense mutation L60P was tested in chicken micromass culture with the replication-competent avian sarcoma leukosis virus retroviral expression system and was shown to result in a loss of function. Thus, loss-of-function mutations in PTHLH cause BDE with short stature.


Subject(s)
Limb Deformities, Congenital/genetics , Mutation , Parathyroid Hormone-Related Protein/genetics , Animals , Cells, Cultured , Chick Embryo , Codon, Nonsense , Disease Models, Animal , Female , Foot Deformities, Congenital/genetics , Foot Deformities, Congenital/pathology , Genes, Dominant , Growth Disorders/genetics , Growth Disorders/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Humans , Limb Deformities, Congenital/pathology , Male , Mice , Mice, Knockout , Mutation, Missense , Parathyroid Hormone-Related Protein/deficiency , Pedigree , Phenotype , Point Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...