Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 194(4): 2263-2277, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38134324

ABSTRACT

Carbon fixation relies on Rubisco and 10 additional enzymes in the Calvin-Benson-Bassham cycle. Epimerization of xylulose-5-phosphate (Xu5P) into ribulose-5-phosphate (Ru5P) contributes to the regeneration of ribulose-1,5-bisphosphate, the substrate of Rubisco. Ribulose-5-phosphate-3-epimerase (RPE, EC 5.1.3.1) catalyzes the formation of Ru5P, but it can also operate in the pentose-phosphate pathway by catalyzing the reverse reaction. Here, we describe the structural and biochemical properties of the recombinant RPE isoform 1 from Chlamydomonas (Chlamydomonas reinhardtii) (CrRPE1). The enzyme is a homo-hexamer that contains a zinc ion in the active site and exposes a catalytic pocket on the top of an α8ß8 triose isomerase-type barrel as observed in structurally solved RPE isoforms from both plant and non-plant sources. By optimizing and developing enzyme assays to monitor the reversible epimerization of Ru5P to Xu5P and vice versa, we determined the catalytic parameters that differ from those of other plant paralogs. Despite being identified as a putative target of multiple thiol-based redox modifications, CrRPE1 activity is not affected by both reductive and oxidative treatments, indicating that enzyme catalysis is insensitive to possible redox alterations of cysteine residues. We mapped phosphorylation sites on the crystal structure, and the specific location at the entrance of the catalytic cleft supports a phosphorylation-based regulatory mechanism. This work provides an accurate description of the structural features of CrRPE1 and an in-depth examination of its catalytic and regulatory properties highlighting the physiological relevance of this enzyme in the context of photosynthetic carbon fixation.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Pentoses , Chlamydomonas reinhardtii/metabolism , Microalgae/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Models, Molecular , Chloroplasts/metabolism , Racemases and Epimerases , Phosphates
2.
J Chem Inf Model ; 64(1): 26-41, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38124369

ABSTRACT

AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology, serving as highly reliable and effective methods for predicting protein structures. This article explores their impact and limitations, focusing on their integration into experimental pipelines and their application in diverse protein classes, including membrane proteins, intrinsically disordered proteins (IDPs), and oligomers. In experimental pipelines, AF2 models help X-ray crystallography in resolving the phase problem, while complementarity with mass spectrometry and NMR data enhances structure determination and protein flexibility prediction. Predicting the structure of membrane proteins remains challenging for both AF2 and RF due to difficulties in capturing conformational ensembles and interactions with the membrane. Improvements in incorporating membrane-specific features and predicting the structural effect of mutations are crucial. For intrinsically disordered proteins, AF2's confidence score (pLDDT) serves as a competitive disorder predictor, but integrative approaches including molecular dynamics (MD) simulations or hydrophobic cluster analyses are advocated for accurate dynamics representation. AF2 and RF show promising results for oligomeric models, outperforming traditional docking methods, with AlphaFold-Multimer showing improved performance. However, some caveats remain in particular for membrane proteins. Real-life examples demonstrate AF2's predictive capabilities in unknown protein structures, but models should be evaluated for their agreement with experimental data. Furthermore, AF2 models can be used complementarily with MD simulations. In this Perspective, we propose a "wish list" for improving deep-learning-based protein folding prediction models, including using experimental data as constraints and modifying models with binding partners or post-translational modifications. Additionally, a meta-tool for ranking and suggesting composite models is suggested, driving future advancements in this rapidly evolving field.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Furylfuramide , Protein Folding , Molecular Dynamics Simulation , Membrane Proteins , Protein Conformation
3.
BMC Biol ; 21(1): 73, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37024974

ABSTRACT

BACKGROUND: E3 ubiquitin ligases play critical roles in regulating cellular signaling pathways by inducing ubiquitylation of key components. RNF111/Arkadia is a RING E3 ubiquitin ligase that activates TGF-ß signaling by inducing ubiquitylation and proteasomal degradation of the transcriptional repressor SKIL/SnoN. In this study, we have sought to identify novel regulators of the E3 ubiquitin ligase activity of RNF111 by searching for proteins that specifically interacts with its RING domain. RESULTS: We found that UBXN7, a member of the UBA-UBX family, directly interacts with the RING domain of RNF111 or its related E3 RNF165/ARK2C that shares high sequence homology with RNF111. We showed that UBXN7 docks on RNF111 or RNF165 RING domain through its UAS thioredoxin-like domain. Overexpression of UBXN7 or its UAS domain increases endogenous RNF111, while an UBXN7 mutant devoid of UAS domain has no effect. Conversely, depletion of UBXN7 decreases RNF111 protein level. As a consequence, we found that UBXN7 can modulate degradation of the RNF111 substrate SKIL in response to TGF-ß signaling. We further unveiled this mechanism of regulation by showing that docking of the UAS domain of UBXN7 inhibits RNF111 ubiquitylation by preventing interaction of the RING domain with the E2 conjugating enzymes. By analyzing the interactome of the UAS domain of UBXN7, we identified that it also interacts with the RING domain of the E3 TOPORS and similarly regulates its E3 ubiquitin ligase activity by impairing E2 binding. CONCLUSIONS: Taken together, our results demonstrate that UBXN7 acts as a direct regulator for the E3 ubiquitin ligases RNF111, RNF165, and TOPORS and reveal that a thioredoxin-like domain can dock on specific RING domains to regulate their E3 ubiquitin ligase activity.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Transforming Growth Factor beta/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
4.
Front Plant Sci ; 14: 1130430, 2023.
Article in English | MEDLINE | ID: mdl-36875598

ABSTRACT

The Calvin-Benson-Bassham (CBB) cycle comprises the metabolic phase of photosynthesis and is responsible for carbon fixation and the production of sugar phosphates. The first step of the cycle involves the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) which catalyzes the incorporation of inorganic carbon into 3-phosphoglyceric acid (3PGA). The following steps include ten enzymes that catalyze the regeneration of ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco. While it is well established that Rubisco activity acts as a limiting step of the cycle, recent modeling studies and experimental evidence have shown that the efficiency of the pathway is also impacted by the regeneration of the Rubisco substrate itself. In this work, we review the current understanding of the structural and catalytic features of the photosynthetic enzymes that catalyze the last three steps of the regeneration phase, namely ribose-5-phosphate isomerase (RPI), ribulose-5-phosphate epimerase (RPE), and phosphoribulokinase (PRK). In addition, the redox- and metabolic-based regulatory mechanisms targeting the three enzymes are also discussed. Overall, this review highlights the importance of understudied steps in the CBB cycle and provides direction for future research aimed at improving plant productivity.

5.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432196

ABSTRACT

This work identifies new ligands of the nucleoprotein N of SARS-CoV-2 by in silico screening, which used a new model of N, built from an Alphafold model refined by molecular dynamic simulations. The ligands were neuropeptides, such as substance P (1-7) and enkephalin, bound at a large site of the C-terminal or associated with the N-terminal ß-sheet. The BA4 and BA5 Omicron variants of N also exhibited a large site as in wt N, and an increased flexibility of the BA5 variant, enabling substance P binding. The binding sites of some ligands deduced from modeling in wt N were assessed by mutation studies in surface plasmon resonance experiments. Dynamic light scattering showed that the ligands impeded RNA binding to N, which likely inhibited replication. We suggest that the physiological role of these neuropeptides in neurotransmission, pain and vasodilation for cholecystokinin and substance P could be altered by binding to N. We speculate that N may link between viral replication and multiple pathways leading to long COVID-19 symptoms. Therefore, N may constitute a "danger hub" that needs to be inhibited, even at high cost for the host. Antivirals targeted to N may therefore reduce the risk of brain fog and stroke, and improve patients' health.


Subject(s)
COVID-19 , Neuropeptides , Humans , Nucleoproteins , SARS-CoV-2 , Ligands , Substance P , Synaptic Transmission , Inflammation , Post-Acute COVID-19 Syndrome
6.
J Struct Biol ; 214(3): 107873, 2022 09.
Article in English | MEDLINE | ID: mdl-35680033

ABSTRACT

The Calvin-Benson cycle fixes carbon dioxide into organic triosephosphates through the collective action of eleven conserved enzymes. Regeneration of ribulose-1,5-bisphosphate, the substrate of Rubisco-mediated carboxylation, requires two lyase reactions catalyzed by fructose-1,6-bisphosphate aldolase (FBA). While cytoplasmic FBA has been extensively studied in non-photosynthetic organisms, functional and structural details are limited for chloroplast FBA encoded by oxygenic phototrophs. Here we determined the crystal structure of plastidial FBA from the unicellular green alga Chlamydomonas reinhardtii (Cr). We confirm that CrFBA folds as a TIM barrel, describe its catalytic pocket and homo-tetrameric state. Multiple sequence profiling classified the photosynthetic paralogs of FBA in a distinct group from non-photosynthetic paralogs. We mapped the sites of thiol- and phospho-based post-translational modifications known from photosynthetic organisms and predict their effects on enzyme catalysis.


Subject(s)
Chlamydomonas reinhardtii , Carbon Dioxide , Chlamydomonas reinhardtii/metabolism , Chloroplasts , Fructose , Fructose-Bisphosphate Aldolase , Photosynthesis , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism
7.
Molecules ; 26(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946802

ABSTRACT

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Naproxen/pharmacology , Nucleoproteins/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Animals , Cell Line , Chlorocebus aethiops , Drug Repositioning , Humans , Molecular Docking Simulation , Nucleoproteins/metabolism , SARS-CoV-2/physiology , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
8.
Plant J ; 107(2): 434-447, 2021 07.
Article in English | MEDLINE | ID: mdl-33930214

ABSTRACT

Thioredoxins (TRXs) are ubiquitous disulfide oxidoreductases structured according to a highly conserved fold. TRXs are involved in a myriad of different processes through a common chemical mechanism. Plant TRXs evolved into seven types with diverse subcellular localization and distinct protein target selectivity. Five TRX types coexist in the chloroplast, with yet scarcely described specificities. We solved the crystal structure of a chloroplastic z-type TRX, revealing a conserved TRX fold with an original electrostatic surface potential surrounding the redox site. This recognition surface is distinct from all other known TRX types from plant and non-plant sources and is exclusively conserved in plant z-type TRXs. We show that this electronegative surface endows thioredoxin z (TRXz) with a capacity to activate the photosynthetic Calvin-Benson cycle enzyme phosphoribulokinase. The distinct electronegative surface of TRXz thereby extends the repertoire of TRX-target recognitions.


Subject(s)
Algal Proteins/chemistry , Chloroplast Thioredoxins/chemistry , Algal Proteins/metabolism , Chlamydomonas reinhardtii/metabolism , Chloroplast Thioredoxins/metabolism , Chloroplasts/metabolism , Crystallography , Oxidation-Reduction , Protein Structure, Quaternary , Protein Structure, Tertiary , Static Electricity
9.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782132

ABSTRACT

Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/metabolism , RNA Stability , Saccharomyces cerevisiae Proteins/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/genetics , Exosomes/metabolism , Polyadenylation , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics
10.
Parasitol Res ; 120(3): 785-796, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33409640

ABSTRACT

Leishmania spp. and Trypanosoma cruzi are parasites belonging to the Trypanosomatidae family and the causative agents for two very important neglected tropical diseases (NTDs), namely leishmaniasis and trypanosomiasis, respectively. Together, they affect millions of people worldwide and the number of cases is constantly rising; thus, further effort on identifying and developing non-toxic, affordable and effective new drug is urgently needed to overcome this alarming situation. Exploring natural products from fungal and bacterial origin remains hitherto a valuable approach to find new hits and candidates for the development of new drugs against these protozoal human infections. Endophytes, which are microorganisms (fungal and bacterial) inhabiting plant tissues, represent a promising source, as they hold potential to produce a high number of distinct chemical scaffolds. These structurally diverse natural products have previously been successfully tested against a wide range of pathogenic microorganisms. The present review provides an update of endophytic compounds exerting anti-trypanosomal and anti-leishmanial effects and their predicted pharmacokinetic properties.


Subject(s)
Antiprotozoal Agents/pharmacology , Bacteria/chemistry , Biological Products/pharmacology , Endophytes/chemistry , Fungi/chemistry , Leishmania/drug effects , Trypanosoma cruzi/drug effects , Animals , Humans , Leishmania/physiology , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Plants/microbiology , Trypanosoma cruzi/physiology , Trypanosomiasis/drug therapy , Trypanosomiasis/parasitology
11.
Int J Mol Sci ; 21(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096784

ABSTRACT

The Calvin-Benson cycle is the key metabolic pathway of photosynthesis responsible for carbon fixation and relies on eleven conserved enzymes. Ribose-5-phosphate isomerase (RPI) isomerizes ribose-5-phosphate into ribulose-5-phosphate and contributes to the regeneration of the Rubisco substrate. Plant RPI is the target of diverse post-translational modifications including phosphorylation and thiol-based modifications to presumably adjust its activity to the photosynthetic electron flow. Here, we describe the first experimental structure of a photosynthetic RPI at 1.4 Å resolution. Our structure confirms the composition of the catalytic pocket of the enzyme. We describe the homo-dimeric state of the protein that we observed in the crystal and in solution. We also map the positions of previously reported post-translational modifications and propose mechanisms by which they may impact the catalytic parameters. The structural data will inform the biochemical modeling of photosynthesis.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Chlamydomonas reinhardtii/enzymology , Chloroplast Proteins/chemistry , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Catalytic Domain , Chlamydomonas reinhardtii/physiology , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Photosynthesis , Protein Multimerization , Protein Processing, Post-Translational , Scattering, Small Angle , X-Ray Diffraction
12.
Nat Commun ; 11(1): 122, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31913314

ABSTRACT

The No-Go Decay (NGD) mRNA surveillance pathway degrades mRNAs containing stacks of stalled ribosomes. Although an endoribonuclease has been proposed to initiate cleavages upstream of the stall sequence, the production of two RNA fragments resulting from a unique cleavage has never been demonstrated. Here we use mRNAs expressing a 3'-ribozyme to produce truncated transcripts in vivo to mimic naturally occurring truncated mRNAs known to trigger NGD. This technique allows us to analyse endonucleolytic cleavage events at single-nucleotide resolution starting at the third collided ribosome, which we show to be Hel2-dependent. These cleavages map precisely in the mRNA exit tunnel of the ribosome, 8 nucleotides upstream of the first P-site residue and release 5'-hydroxylated RNA fragments requiring 5'-phosphorylation prior to digestion by the exoribonuclease Xrn1, or alternatively by Dxo1. Finally, we identify the RNA kinase Trl1, alias Rlg1, as an essential player in the degradation of NGD RNAs.


Subject(s)
RNA Ligase (ATP)/metabolism , RNA, Fungal/chemistry , RNA, Messenger/chemistry , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Exoribonucleases/genetics , Exoribonucleases/metabolism , Phosphorylation , RNA Ligase (ATP)/genetics , RNA Stability , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
13.
Proc Natl Acad Sci U S A ; 116(16): 8048-8053, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30923119

ABSTRACT

In land plants and algae, the Calvin-Benson (CB) cycle takes place in the chloroplast, a specialized organelle in which photosynthesis occurs. Thioredoxins (TRXs) are small ubiquitous proteins, known to harmonize the two stages of photosynthesis through a thiol-based mechanism. Among the 11 enzymes of the CB cycle, the TRX target phosphoribulokinase (PRK) has yet to be characterized at the atomic scale. To accomplish this goal, we determined the crystal structures of PRK from two model species: the green alga Chlamydomonas reinhardtii (CrPRK) and the land plant Arabidopsis thaliana (AtPRK). PRK is an elongated homodimer characterized by a large central ß-sheet of 18 strands, extending between two catalytic sites positioned at its edges. The electrostatic surface potential of the catalytic cavity has both a positive region suitable for binding the phosphate groups of substrates and an exposed negative region to attract positively charged TRX-f. In the catalytic cavity, the regulatory cysteines are 13 Å apart and connected by a flexible region exclusive to photosynthetic eukaryotes-the clamp loop-which is believed to be essential for oxidation-induced structural rearrangements. Structural comparisons with prokaryotic and evolutionarily older PRKs revealed that both AtPRK and CrPRK have a strongly reduced dimer interface and an increased number of random-coiled regions, suggesting that a general loss in structural rigidity correlates with gains in TRX sensitivity during the molecular evolution of PRKs in eukaryotes.


Subject(s)
Arabidopsis , Chlamydomonas , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Photosynthesis/physiology , Plant Proteins/chemistry , Arabidopsis/chemistry , Arabidopsis/enzymology , Chlamydomonas/chemistry , Chlamydomonas/enzymology , Crystallography , Models, Molecular , Oxidation-Reduction , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Proteins/metabolism , Proteome/chemistry
14.
Biochemistry ; 58(10): 1440-1449, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30785730

ABSTRACT

To be fully active and participate in the metabolism of phosphorylated nucleotides, most nucleoside diphosphate kinases (NDPKs) have to assemble into stable hexamers. Here we studied the role played by six intersubunit salt bridges R80-D93 in the stability of NDPK from the pathogen Mycobacterium tuberculosis ( Mt). Mutating R80 into Ala or Asn abolished the salt bridges. Unexpectedly, compensatory stabilizing mechanisms appeared for R80A and R80N mutants and we studied them by biochemical and structural methods. The R80A mutant crystallized into space group I222 that is unusual for NDPK, and its hexameric structure revealed the occurrence at the trimer interface of a stabilizing hydrophobic patch around the mutation. Functionally relevant, a trimer of the R80A hexamer showed a remodeling of the binding site. In this conformation, the cleft of the active site is more open, and then active His117 is more accessible to substrates. H/D exchange mass spectrometry analysis of the wild type and the R80A and R80N mutants showed that the remodeled region of the protein is highly solvent accessible, indicating that equilibrium between open and closed conformations is possible. We propose that such equilibrium occurs in vivo and explains how bulky substrates access the catalytic His117.


Subject(s)
Nucleoside-Diphosphate Kinase/genetics , Nucleoside-Diphosphate Kinase/metabolism , Nucleoside-Diphosphate Kinase/ultrastructure , Binding Sites/genetics , Catalytic Domain , Crystallography, X-Ray/methods , Kinetics , Mass Spectrometry/methods , Models, Molecular , Mutagenesis, Site-Directed , Mutation/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Phosphorylation , Protein Binding/genetics , Protein Domains/genetics
15.
Antioxidants (Basel) ; 8(1)2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30609656

ABSTRACT

Thioredoxins (TRXs) are major protein disulfide reductases of the cell. Their redox activity relies on a conserved Trp-Cys-(Gly/Pro)-Pro-Cys active site bearing two cysteine (Cys) residues that can be found either as free thiols (reduced TRXs) or linked together by a disulfide bond (oxidized TRXs) during the catalytic cycle. Their reactivity is crucial for TRX activity, and depends on the active site microenvironment. Here, we solved and compared the 3D structure of reduced and oxidized TRX h1 from Chlamydomonas reinhardtii (CrTRXh1). The three-dimensional structure was also determined for mutants of each active site Cys. Structural alignments of CrTRXh1 with other structurally solved plant TRXs showed a common spatial fold, despite the low sequence identity. Structural analyses of CrTRXh1 revealed that the protein adopts an identical conformation independently from its redox state. Treatment with iodoacetamide (IAM), a Cys alkylating agent, resulted in a rapid and pH-dependent inactivation of CrTRXh1. Starting from fully reduced CrTRXh1, we determined the acid dissociation constant (pKa) of each active site Cys by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analyses coupled to differential IAM-based alkylation. Based on the diversity of catalytic Cys deprotonation states, the mechanisms and structural features underlying disulfide redox activity are discussed.

16.
Antioxidants (Basel) ; 7(12)2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30477165

ABSTRACT

Protein disulfide reduction by thioredoxins (TRXs) controls the conformation of enzyme active sites and their multimeric complex formation. TRXs are small oxidoreductases that are broadly conserved in all living organisms. In photosynthetic eukaryotes, TRXs form a large multigenic family, and they have been classified in different types: f, m, x, y, and z types are chloroplastic, while o and h types are located in mitochondria and cytosol. In the model unicellular alga Chlamydomonas reinhardtii, the TRX family contains seven types, with f- and h-types represented by two isozymes. Type-f TRXs interact specifically with targets in the chloroplast, controlling photosynthetic carbon fixation by the Calvin⁻Benson cycle. We solved the crystal structures of TRX f2 and TRX h1 from C. reinhardtii. The systematic comparison of their atomic features revealed a specific conserved electropositive crown around the active site of TRX f, complementary to the electronegative surface of their targets. We postulate that this surface provides specificity to each type of TRX.

17.
ACS Synth Biol ; 7(9): 2074-2086, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30165733

ABSTRACT

Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Photosynthesis , Plasmids/metabolism , Synthetic Biology/methods , Biotechnology , Chlamydomonas reinhardtii/genetics , Gene Expression , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plasmids/genetics , Promoter Regions, Genetic
18.
Structure ; 26(9): 1196-1209.e8, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30033218

ABSTRACT

RPAP3 and PIH1D1 are part of the HSP90 co-chaperone R2TP complex involved in the assembly process of many molecular machines. In this study, we performed a deep structural investigation of the HSP binding abilities of the two TPR domains of RPAP3. We combined 3D NMR, non-denaturing MS, and ITC techniques with Y2H, IP-LUMIER, FRET, and ATPase activity assays and explain the fundamental role played by the second TPR domain of RPAP3 in the specific recruitment of HSP90. We also established the 3D structure of an RPAP3:PIH1D1 sub-complex demonstrating the need for a 34-residue insertion, specific of RPAP3 isoform 1, for the tight binding of PIH1D1. We also confirm the existence of a complex lacking PIH1D1 in human cells (R2T), which shows differential binding to certain clients. These results highlight similarities and differences between the yeast and human R2TP complexes, and document the diversification of this family of co-chaperone complexes in human.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Binding Sites , Cell Line , HSP72 Heat-Shock Proteins/metabolism , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Multimerization
19.
Biochim Biophys Acta Gen Subj ; 1861(8): 2132-2145, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28552632

ABSTRACT

BACKGROUND: In photosynthetic organisms, transketolase (TK) is involved in the Calvin-Benson cycle and participates to the regeneration of ribulose-5-phosphate. Previous studies demonstrated that TK catalysis is strictly dependent on thiamine pyrophosphate (TPP) and divalent ions such as Mg2+. METHODS: TK from the unicellular green alga Chlamydomonas reinhardtii (CrTK) was recombinantly produced and purified to homogeneity. Biochemical properties of the CrTK enzyme were delineated by activity assays and its structural features determined by CD analysis and X-ray crystallography. RESULTS: CrTK is homodimeric and its catalysis depends on the reconstitution of the holo-enzyme in the presence of both TPP and Mg2+. Activity measurements and CD analysis revealed that the formation of fully active holo-CrTK is Mg2+-dependent and proceeds with a slow kinetics. The 3D-structure of CrTK without cofactors (CrTKapo) shows that two portions of the active site are flexible and disordered while they adopt an ordered conformation in the holo-form. Oxidative treatments revealed that Mg2+ participates in the redox control of CrTK by changing its propensity to be inactivated by oxidation. Indeed, the activity of holo-form is unaffected by oxidation whereas CrTK in the apo-form or reconstituted with the sole TPP show a strong sensitivity to oxidative inactivation. CONCLUSION: These evidences indicate that Mg2+ is fundamental to allow gradual conformational arrangements suited for optimal catalysis. Moreover, Mg2+ is involved in the control of redox sensitivity of CrTK. GENERAL SIGNIFICANCE: The importance of Mg2+ in the functionality and redox sensitivity of CrTK is correlated to light-dependent fluctuations of Mg2+ in chloroplasts.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Magnesium/pharmacology , Transketolase/chemistry , Catalytic Domain , Circular Dichroism , Crystallography, X-Ray , Oxidation-Reduction , Protein Conformation , Thiamine Pyrophosphate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...