Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; 13(5): e0117822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36190127

ABSTRACT

Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na+ pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous pkatp4 locus was replaced by a recodonized P. knowlesi atp4 (pkatp4) coding region or the orthologous coding region from P. falciparum, Plasmodium malariae, Plasmodium ovale subsp. curtisi, or Plasmodium vivax. Each OR transgenic line displayed a similar growth pattern to the parental P. knowlesi line. We found significant orthologue-specific differences in parasite susceptibility to three chemically unrelated ATP4 inhibitors, but not to comparator drugs, among the P. knowlesi OR lines. The PfATP4OR transgenic line of P. knowlesi was significantly more susceptible than our control PkATP4OR line to three ATP4 inhibitors: cipargamin, PA21A092, and SJ733. The PvATP4OR and PmATP4OR lines were similarly susceptible to the control PkATP4OR line, but the PocATP4OR line was significantly less susceptible to all ATP4 inhibitors than the PkATP4OR line. Cipargamin-induced inhibition of Na+ efflux was also significantly greater with the P. falciparum orthologue of ATP4. This confirms that species-specific susceptibility differences previously observed in ex vivo studies of human isolates are partly or wholly enshrined in the primary amino acid sequences of the respective ATP4 orthologues and highlights the need to monitor efficacy of investigational malaria drugs against multiple species. P. knowlesi is now established as an important in vitro model for studying drug susceptibility in non-falciparum malaria parasites. IMPORTANCE Effective drugs are vital to minimize the illness and death caused by malaria. Development of new drugs becomes ever more urgent as drug resistance emerges. Among promising compounds now being developed to treat malaria are several unrelated molecules that each inhibit the same protein in the malaria parasite-ATP4. Here, we exploited the genetic tractability of P. knowlesi to replace its own ATP4 genes with orthologues from five human-infective species to understand the drug susceptibility differences among these parasites. We previously estimated the susceptibility to ATP4-targeting drugs of each species using clinical samples from malaria patients. These estimates closely matched those of the corresponding "hybrid" P. knowlesi parasites carrying introduced ATP4 genes. Thus, species-specific ATP4 inhibitor efficacy is directly determined by the sequence of the gene. Our novel approach to understanding cross-species susceptibility/resistance can strongly support the effort to develop antimalarials that effectively target all human malaria parasite species.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Plasmodium knowlesi , Animals , Humans , Plasmodium knowlesi/genetics , Antimalarials/pharmacology , Adenosine Triphosphatases/metabolism , Plasmodium falciparum , Malaria, Falciparum/parasitology , Malaria/parasitology , Cations/metabolism , Adenosine Triphosphate/metabolism
2.
Blood Adv ; 5(22): 4710-4720, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34470050

ABSTRACT

Plasmodium falciparum malaria causes morbidity and mortality in African children with sickle cell anemia (SCA), but comparisons of host responses to P falciparum between children with SCA (homozygous sickle cell disease/hemoglobin SS [HbSS]) and normal hemoglobin genotype/hemoglobin AA (HbAA) are limited. We assessed parasite biomass and plasma markers of inflammation and endothelial activation in children with HbAA (n = 208) or HbSS (n = 22) who presented with severe anemia and P falciparum parasitemia to Mulago Hospital in Kampala, Uganda. Genotyping was performed at study completion. No child had known SCA at enrollment. Children with HbSS did not differ from children with HbAA in peripheral parasite density, but had significantly lower sequestered parasite biomass. Children with HbSS had greater leukocytosis but significantly lower concentrations of several plasma inflammatory cytokines, including tumor necrosis factor α (TNF-α). In contrast, children with HbSS had threefold greater concentrations of angiopoietin-2 (Angpt-2), a marker of endothelial dysregulation associated with mortality in severe malaria. Lower TNF-α concentrations were associated with increased risk of postdischarge mortality or readmission, whereas higher Angpt-2 concentrations were associated with increased risk of recurrent clinical malaria. Children with SCA have decreased parasite sequestration and inflammation but increased endothelial dysregulation during severe anemia with P falciparum parasitemia, which may ameliorate acute infectious complications but predispose to harmful long-term sequelae.


Subject(s)
Anemia, Sickle Cell , Malaria , Parasites , Aftercare , Anemia, Sickle Cell/complications , Animals , Child , Humans , Patient Discharge , Uganda/epidemiology
3.
FEMS Microbiol Rev ; 45(3)2021 05 05.
Article in English | MEDLINE | ID: mdl-33095255

ABSTRACT

Studies of the susceptibility of Plasmodium falciparum to the artemisinin family of antimalarial drugs provide a complex picture of partial resistance (tolerance) associated with increased parasite survival in vitro and in vivo. We present an overview of the genetic loci that, in mutant form, can independently elicit parasite tolerance. These encode Kelch propeller domain protein PfK13, ubiquitin hydrolase UBP-1, actin filament-organising protein Coronin, also carrying a propeller domain, and the trafficking adaptor subunit AP-2µ. Detailed studies of these proteins and the functional basis of artemisinin tolerance in blood-stage parasites are enabling a new synthesis of our understanding to date. To guide further experimental work, we present two major conclusions. First, we propose a dual-component model of artemisinin tolerance in P. falciparum comprising suppression of artemisinin activation in early ring stage by reducing endocytic haemoglobin capture from host cytosol, coupled with enhancement of cellular healing mechanisms in surviving cells. Second, these two independent requirements limit the likelihood of development of complete artemisinin resistance by P. falciparum, favouring deployment of existing drugs in new schedules designed to exploit these biological limits, thus extending the useful life of current combination therapies.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
4.
mBio ; 11(1)2020 02 25.
Article in English | MEDLINE | ID: mdl-32098816

ABSTRACT

The efficacy of current antimalarial drugs is threatened by reduced susceptibility of Plasmodium falciparum to artemisinin, associated with mutations in pfkelch13 Another gene with variants known to modulate the response to artemisinin encodes the µ subunit of the AP-2 adaptin trafficking complex. To elucidate the cellular role of AP-2µ in P. falciparum, we performed a conditional gene knockout, which severely disrupted schizont organization and maturation, leading to mislocalization of key merozoite proteins. AP-2µ is thus essential for blood-stage replication. We generated transgenic P. falciparum parasites expressing hemagglutinin-tagged AP-2µ and examined cellular localization by fluorescence and electron microscopy. Together with mass spectrometry analysis of coimmunoprecipitating proteins, these studies identified AP-2µ-interacting partners, including other AP-2 subunits, the K10 kelch-domain protein, and PfEHD, an effector of endocytosis and lipid mobilization, but no evidence was found of interaction with clathrin, the expected coat protein for AP-2 vesicles. In reverse immunoprecipitation experiments with a clathrin nanobody, other heterotetrameric AP-complexes were shown to interact with clathrin, but AP-2 complex subunits were absent.IMPORTANCE We examine in detail the AP-2 adaptin complex from the malaria parasite Plasmodium falciparum In most studied organisms, AP-2 is involved in bringing material into the cell from outside, a process called endocytosis. Previous work shows that changes to the µ subunit of AP-2 can contribute to drug resistance. Our experiments show that AP-2 is essential for parasite development in blood but does not have any role in clathrin-mediated endocytosis. This suggests that a specialized function for AP-2 has developed in malaria parasites, and this may be important for understanding its impact on drug resistance.


Subject(s)
Antimalarials/pharmacology , Artemisinins/metabolism , Clathrin/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Schizonts/drug effects , Schizonts/metabolism , Adaptor Protein Complex 2/genetics , Adaptor Protein Complex 2/metabolism , Drug Resistance , Endocytosis/physiology , Gene Knockout Techniques , Membrane Proteins/metabolism , Organisms, Genetically Modified , Plasmodium falciparum/genetics , Protein Transport , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schizonts/genetics
5.
Article in English | MEDLINE | ID: mdl-31636063

ABSTRACT

Management of uncomplicated malaria worldwide is threatened by the emergence in Asia of Plasmodium falciparum carrying variants of the pfk13 locus and exhibiting reduced susceptibility to artemisinin. Mutations in two other genes, ubp1 and ap2µ, are associated with artemisinin resistance in rodent malaria and with clinical failure of combination therapy in African malaria patients. Transgenic P. falciparum clones, each carrying orthologues of mutations in pfap2µ and pfubp1 associated with artemisinin resistance in Plasmodium chabaudi, were derived by Cas9 gene editing. Susceptibility to artemisinin and other antimalarial drugs was determined. Following exposure to 700 nM dihydroartemisinin in the ring-stage survival assay, we found strong evidence that transgenic parasites expressing the I592T variant (11% survival), but not the S160N variant (1% survival), of the AP2µ adaptin subunit were significantly less susceptible than the parental wild-type parasite population. The V3275F variant of UBP1, but not the V3306F variant, also displayed reduced susceptibility to dihydroartemisinin (8.5% survival versus 0.5% survival). AP2µ and UBP1 variants did not elicit reduced susceptibility to 48 h of exposure to artemisinin or to other antimalarial drugs. Therefore, variants of the AP2 adaptor complex µ-subunit and of the ubiquitin hydrolase UBP1 reduce in vitro artemisinin susceptibility at the early ring stage in P. falciparum These findings confirm the existence of multiple pathways to perturbation of either the mode of action of artemisinin, the parasite's adaptive mechanisms of resistance, or both. The cellular role of UBP1 and AP2µ in Plasmodium parasites should now be elucidated.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Gene Editing , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
6.
Article in English | MEDLINE | ID: mdl-30599390

ABSTRACT

Clinical studies suggest that outcomes for hospitalised malaria patients can be improved by managed hypothermia during treatment. We examined the impact of short pulses of low temperature on ring-stage susceptibility of Plasmodium falciparum to artemisinin in vitro. The usually artemisinin-sensitive clone 3D7 exhibited substantially reduced ring-stage susceptibility to a 4-h pulse of 700 nM dihydro-artemisinin administered during a 5-h pulse of low temperature down to 17 °C. Parasite growth through the subsequent asexual cycle was not affected by the temperature pulse. Chloroquine and pyronaridine susceptibility, in a standard 48-h test, was not affected by brief exposures to low temperature. Fever-like temperature pulses up to 40 °C were also accompanied by enhanced ring-stage survival of 700 nM artemisinin pulses, but parasite growth was generally attenuated at this temperature. We discuss these findings in relation to the possible activation of parasite stress responses, including the unfolded protein response, by hypo- or hyper-thermic conditions. Physiological states may need to be considered in artemisinin-treated P. falciparum patients.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Cold Temperature , Plasmodium falciparum/drug effects , Stress, Physiological , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Unfolded Protein Response
8.
Sci Rep ; 7(1): 2438, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28550309

ABSTRACT

Visualizing nucleic acids by gel electrophoresis is one of the most common techniques in molecular biology, and reference molecular weight markers or ladders are commonly used for size estimation. We have created the pPSU1 & pPSU2 pair of molecular weight marker plasmids which produce both 100 bp and 1 kb DNA ladders when digested with two common restriction enzymes. The 100 bp ladder fragments have been optimized to migrate appropriately on both agarose and native polyacrylamide, unlike many currently available DNA ladders. Sufficient plasmid DNA can be isolated from 100 ml E. coli cultures for the two plasmids to produce 100 bp or 1 kb ladders for 1000 gels. As such, the pPSU1 and pPSU2 plasmids provide reference fragments from 50 to 10000 bp at a fraction of the cost of commercial DNA ladders. The pPSU1 and pPSU2 plasmids are available without licensing restrictions to nonprofit academic users, affording freely available high-quality, low-cost molecular weight standards for molecular biology applications.


Subject(s)
DNA/genetics , Electrophoresis, Agar Gel/methods , Electrophoresis, Polyacrylamide Gel/methods , Plasmids/genetics , DNA/chemistry , DNA/metabolism , DNA Restriction Enzymes/metabolism , Escherichia coli/genetics , Molecular Biology/methods , Molecular Weight , Plasmids/chemistry , Plasmids/metabolism , Reference Standards
9.
Nature ; 514(7524): 591-6, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25355358

ABSTRACT

The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in many eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys 119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the human Ring1B-Bmi1-UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with several nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome.


Subject(s)
Nucleosomes/chemistry , Nucleosomes/metabolism , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Ubiquitination , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , Histones/chemistry , Histones/metabolism , Humans , Models, Molecular , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...