Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
2.
Article in English | MEDLINE | ID: mdl-37770144

ABSTRACT

Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.


Subject(s)
Antineoplastic Agents , Fabaceae , Cricetinae , Animals , Humans , Mutagens/toxicity , DNA Damage , Cricetulus , Comet Assay , Cell Line, Tumor , Plant Extracts/toxicity , DNA
3.
Environ Geochem Health ; 45(10): 7081-7097, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542205

ABSTRACT

Exposure to coal mining dust poses a substantial health hazard to individuals due to the complex mixture of components released during the extraction process. This study aimed to assess the oxidative potential of residual coal mining dust on human lymphocyte DNA and telomeres and to perform a chemical characterization of coal dust and urine samples. The study included 150 individuals exposed to coal dust for over ten years, along with 120 control individuals. The results revealed significantly higher levels of DNA damage in the exposed group, as indicated by the standard comet assay, and oxidative damage, as determined by the FPG-modified comet assay. Moreover, the exposed individuals exhibited significantly shorter telomeres compared to the control group, and a significant correlation was found between telomere length and oxidative DNA damage. Using the PIXE method on urine samples, significantly higher concentrations of sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), iron (Fe), zinc (Zn), and bromine (Br) were observed in the exposed group compared to the control group. Furthermore, men showed shorter telomeres, greater DNA damage, and higher concentrations of nickel (Ni), calcium (Ca), and chromium (Cr) compared to exposed women. Additionally, the study characterized the particles released into the environment through GC-MS analysis, identifying several compounds, including polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benz[a]anthracene, chrysene, and some alkyl derivatives. These findings underscore the significant health risks associated with exposure to coal mining dust, emphasizing the importance of further research and the implementation of regulatory measures to safeguard the health of individuals in affected populations.


Subject(s)
DNA Damage , Polycyclic Aromatic Hydrocarbons , Male , Humans , Female , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Dust/analysis , Anthracenes/analysis , Coal/toxicity , Coal/analysis , Oxidative Stress
4.
Mol Biol Rep ; 50(8): 7105-7111, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37326748

ABSTRACT

BACKGROUND: A novel virulent bacteriophage infecting phytobacteria Pseudomonas cichorii (P. cichorii) was isolated from leafy vegetables in Brazil. P. cichorii is a Gram-negative soil phytobacterium, the causal agent of a number of economically important plant diseases worldwide. METHODS AND RESULTS: In this study, a new phage specific for P. cichorii was isolated from solid samples (lettuce, chicory and cabbage), designated vB_Pci_PCMW57. Electron microscopy revealed a small virion (~ 50-nm-diameter icosahedral capsid) with a short, non-contractile tail. The genome of vB_Pci_PCMW57 is 40,117 bp in size, with a GC content of 57.6% and encodes 49 open reading frames. The phage is genetically similar to P. syringae phages Pst_GM1 and Pst_GIL1, and the P. fluorescens phages WRT and KNP. According to electron microscopy and whole-genome sequence analysis, vB_Pci_PCMW57 should be classified as a Caudoviticetes, family Autographiviridae, subfamily Studiervirinae. CONCLUSIONS: The complete phage genome was annotated, and the sequence identity of the virus with other Pseudomonas viruses was higher than 95%. To our knowledge, this is the first report of a bacteriophage infecting Pseudomonas cichorii.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Genome, Viral , Sequence Analysis, DNA , Pseudomonas/genetics , Open Reading Frames/genetics , Phylogeny
5.
Oncotarget ; 14: 637-649, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37343056

ABSTRACT

Diphenyl ditelluride (DPDT) is an organotellurium (OT) compound with pharmacological properties, including antioxidant, antigenotoxic and antimutagenic activities when applied at low concentrations. However, DPDT as well as other OT compounds also show cytotoxicity against mammalian cells when treatments occur at higher drug concentrations. Considering that the underlying mechanisms of toxicity of DPDT against tumor cells have been poorly explored, the objective of our study was to investigate the effects of DPDT against both human cancer and non-tumorigenic cells. As a model, we used the colonic HCT116 cancer cells and the MRC5 fibroblasts. Our results showed that DPDT preferentially targets HCT116 cancer cells when compared to MRC5 cells with IC50 values of 2.4 and 10.1 µM, respectively. This effect was accompanied by the induction of apoptosis and a pronounced G2/M cell cycle arrest in HCT116 cells. Furthermore, DPDT induces DNA strand breaks at concentrations below 5 µM in HCT116 cells and promotes the occurrence of DNA double strand breaks mostly during S-phase as measured by γ-H2AX/EdU double staining. Finally, DPDT forms covalent complexes with DNA topoisomerase I, as observed by the TARDIS assay, with a more prominent effect observed in HCT116 than in MRC5 cells. Taken together, our results show that DPDT preferentially targets HCT116 colon cancer cells likely through DNA topoisomerase I poisoning. This makes DPDT an interesting molecule for further development as an anti-proliferative compound in the context of cancer.


Subject(s)
Colonic Neoplasms , DNA Topoisomerases, Type I , Animals , Humans , HCT116 Cells , DNA Topoisomerases, Type I/metabolism , Apoptosis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , DNA , Mammals/metabolism
6.
Environ Sci Pollut Res Int ; 30(18): 54095-54105, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36869947

ABSTRACT

During coal mining activities, many compounds are released into the environment that can negatively impact human health. Particulate matter, polycyclic aromatic hydrocarbons (PAHs), metals, and oxides are part of the complex mixture that can affect nearby populations. Therefore, we designed this study to evaluate the potential cytotoxic and genotoxic effects in individuals chronically exposed to coal residues from peripheral blood lymphocytes and buccal cells. We recruited 150 individuals who lived more than 20 years in La Loma-Colombia and 120 control individuals from the city of Barranquilla without a history of exposure to coal mining. In the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, significant differences in the frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD), and apoptotic cells (APOP) were observed between the two groups. In the buccal micronucleus cytome (BM-Cyt) assay, a significant formation of NBUD, karyorrhexis (KRX), karyolysis (KRL), condensed chromatin (CC), and binucleated (BN) cells was observed in the exposed group. Considering the characteristics of the study group, a significant correlation for CBMN-Cyt was found between NBUD and vitamin consumption, between MN or APOP and meat consumption, and between MN and age. Moreover, a significant correlation for BM-Cyt was found between KRL and vitamin consumption or age, and BN versus alcohol consumption. Using Raman spectroscopy, a significant increase in the concentration of DNA/RNA bases, creatinine, polysaccharides, and fatty acids was detected in the urine of individuals exposed to coal mining compared to the control group. These results contribute to the discussion on the effects of coal mining on nearby populations and the development of diseases due to chronic exposure to these residues.


Subject(s)
Antineoplastic Agents , Coal Mining , Occupational Exposure , Humans , Occupational Exposure/analysis , Mouth Mucosa , Micronucleus Tests/methods , DNA Damage , Lymphocytes , Antineoplastic Agents/pharmacology
7.
Environ Toxicol Pharmacol ; 97: 104025, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36460284

ABSTRACT

Welding fumes are classified as carcinogenic to humans. The aim of the present study was to measure buccal micronucleus cytome assay biomarkers and to evaluate their association with inorganic elements and genetic polymorphisms (XRCC1, OGG1, XRCC3, GSTM1, and GSTT1) in welders (n = 98) and control individuals (n = 100). Higher levels of DNA damage and cell death were observed in the exposed group. Also, a significant correlation between the frequency of micronuclei and Na, Si, Cl, Ti, Cr, Zn and Mg concentrations. The formation of micronuclei, binucleated cells, cell death was associated with polymorphisms in repair pathways. The OGG1Ser326Cys and XRCC3 241Thr/Met genotypes were associated with cell death. Individuals with GSTM1 null genotype had a higher frequency of micronuclei. These results demonstrate that the deleterious effects of exposure to welding fumes are exacerbated by lifestyle habits, and genetic polymorphisms can influence DNA damage and cell death.


Subject(s)
Metal Workers , Occupational Exposure , Humans , Occupational Exposure/adverse effects , Micronucleus Tests , Polymorphism, Genetic , DNA Damage , Biomarkers , X-ray Repair Cross Complementing Protein 1
8.
Mastology (Online) ; 332023. ilus, tab
Article in English | LILACS | ID: biblio-1433826

ABSTRACT

:Breast cancer is the object of thousands of studies worldwide. Nevertheless, few tools are available to corroborate prediction of response to neoadjuvant chemotherapy. Artificial intelligence is being researched for its potential utility in several fields of knowledge, including oncology. The development of a standardized Artificial intelligence-based predictive model for patients with breast cancer may help make clinical management more personalized and effective. We aimed to apply Artificial intelligence models to predict the response to neoadjuvant chemotherapy based solely on clinical and pathological data. Methods: Medical records of 130 patients treated with neoadjuvant chemotherapy were reviewed and divided into two groups: 90 samples to train the network and 40 samples to perform prospective testingand validate the results obtained by the Artificial intelligence method. Results: Using clinicopathologic data alone, the artificial neural network was able to correctly predict pathologic complete response in 83.3% of the cases. It also correctly predicted 95.6% of locoregional recurrence, as well as correctly determined whether patients were alive or dead at a given time point in 90% of the time. To date, no published research has used clinicopathologic data to predict the response to neoadjuvant chemotherapy in patients with breast cancer, thus highlighting the importance of the present study. Conclusions: Artificial neural network may become an interesting tool for predicting response to neoadjuvant chemotherapy, locoregional recurrence, systemic disease progression, and survival in patients with breast cancer (AU)


Subject(s)
Humans , Female , Middle Aged , Breast Neoplasms/drug therapy , Artificial Intelligence , Neoadjuvant Therapy , Antineoplastic Agents/therapeutic use , Progesterone/metabolism , Retrospective Studies , Neural Networks, Computer , Receptor, ErbB-2/metabolism , Ki-67 Antigen/metabolism , Estrogens/metabolism , Neoplasm Recurrence, Local
9.
Article in English | MEDLINE | ID: mdl-34454693

ABSTRACT

The sodium valproate has been largely used as an anti-epilepsy drug and, recently, as a putative drug in cancer therapy. However, the treatment with sodium valproate has some adverse effects. In this sense, more effective and secure complexes than sodium valproate should be explored in searching for new active drugs. This study aims to evaluate the cytotoxicity of sodium valproate, mixed ternary mononuclear Cu(II) complexes based on valproic acid (VA) with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) ligands - [Cu2(Valp)4], [Cu(Valp)2Phen] and [Cu(Valp)2Bipy] - in yeast Saccharomyces cerevisiae, proficient or deficient in different repair pathways, such as base excision repair (BER), nucleotide excision repair (NER), translesion synthesis (TLS), DNA postreplication repair (PRR), homologous recombination (HR) and non-homologous end-joining (NHEJ). The results indicated that the Cu(II) complexes have higher cytotoxicity than sodium valproate in the following order: [Cu(Valp)2Phen] > [Cu(Valp)2Bipy] > [Cu2(Valp)4] > sodium valproate. The treatment with Cu(II) complexes and sodium valproate induced mutations in S. cerevisiae. The data indicated that yeast strains deficient in BER (Ogg1p), NER (complex Rad1p-Rad10p) or TLS (Rev1p, Rev3p and Rad30p) proteins are associated with increased sensitivity to sodium valproate. The BER mutants (ogg1Δ, apn1Δ, rad27Δ, ntg1Δ and ntg2Δ) showed increased sensitivity to Cu(II) complexes. DNA damage induced by the complexes requires proteins from NER (Rad1p and Rad10p), TLS (Rev1p, Rev3p and Rad30p), PRR (Rad6 and Rad18p) and HR (Rad52p and Rad50p) for efficient repair. Therefore, Cu(II) complexes display enhanced cytotoxicity when compared to the sodium valproate and induce distinct DNA lesions, indicating a potential application as cytotoxic agents.


Subject(s)
Copper/pharmacology , DNA Repair/drug effects , Pharmaceutical Preparations/administration & dosage , Phenanthrolines/pharmacology , Saccharomyces cerevisiae/drug effects , Valproic Acid/pharmacology , DNA/drug effects , DNA Damage/drug effects , DNA Replication/drug effects , Ligands , Mutation/drug effects , Recombination, Genetic/drug effects
10.
Environ Sci Pollut Res Int ; 28(48): 69416-69425, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34302239

ABSTRACT

Nanoparticles such as zinc oxide nanoparticles (ZnO-NP) that are incorporated in consumer and industrial products have caused concern about their potential ecotoxicological impact when released into the environment. Bivalve mollusks are susceptible targets for nanoparticle toxicity since nanomaterials can enter the cells by endocytosis mechanisms. The aim of this study was to evaluate the influence of ZnO-NP on the redox metabolism in Limnoperna fortunei and the DNA damage after exposure to ZnO-NP. Adult bivalves were incubated with 1-, 10-, and 50-µg mL-1 ZnO-NP for 2, 4, and 24 h. Ionic Zn release, enzymatic and non-enzymatic antioxidant activity, oxidative damage, and DNA damage were evaluated. Oxidative damage to proteins and lipids were observed after 4-h exposure and returned to baseline levels after 24 h. Superoxide dismutase levels decreased after 4-h exposure and increased after 24 h. No significant alteration was observed in the catalase activity or even DNA double-strand cleavage. The dissociation of ZnO may occur after 24 h, releasing ionic zinc (Zn2+) by hydrolysis, which was confirmed by the increase in the ionic Zn concentration following 24-h exposure. In conclusion, ZnO-NP were able to induce oxidative stress in exposed golden mussels. The golden mussel can modulate its own antioxidant defenses in response to oxidative stress and seems to be able to hydrolyze the nanoparticles and consequently, release Zn2+ into the cellular compartment.


Subject(s)
Metal Nanoparticles , Mytilidae , Nanoparticles , Zinc Oxide , Animals , Oxidation-Reduction , Oxidative Stress
11.
Sci Rep ; 11(1): 11998, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099808

ABSTRACT

Due to the high rate of transmissibility, Brazil became the new COVID-19 outbreak epicenter and, since then, is being monitored to understand how SARS-CoV-2 mutates and spreads. We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells. Structural analysis brought to light the positions of these mutations on protein structures, contributing towards studies of selective structure-based drug discovery and vaccine development.


Subject(s)
COVID-19/genetics , Mutation/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Brazil , Genome, Viral , Genomics , Humans , SARS-CoV-2/pathogenicity , Severity of Illness Index
12.
Ecotoxicol Environ Saf ; 212: 111935, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33578128

ABSTRACT

During the welding activities many compounds are released, several of these cause oxidative stress and inflammation and some are considered carcinogenic, in fact the International Agency for Research on Cancer established that welding fumes are carcinogenic to humans. The aim of the present study was to analyze the cytotoxic and genotoxic potential of exposure to welding fumes and to determine concentrations of metals in blood and urine of occupationally exposed workers. We included 98 welders and 100 non-exposed individuals. Our results show significant increase in the frequency of micronuclei (MN), nucleoplasmic bridges (NPB), nuclear buds (NBUD) and necrotic cells (NECR) in cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, as well as in the telomere length (TL) of the exposed individuals with respect to the non-exposed group. In the analysis of the concentrations of inorganic elements using PIXE method, were found higher concentrations of Cr, Fe and Cu in the urine, and Cr, Fe, Mg, Al, S, and Mn in the blood in the exposed group compared to the non-exposed group. A significant correlation was observed between MN and age and between NPB and years of exposure. Additionally, we found a significant correlation for TL in relation to MN, NPB, age and years of exposure in the exposed group. Interestingly, a significant correlation between MN and the increase in the concentration of Mg, S, Fe and Cu in blood samples of the exposed group, and between MN and Cr, Fe, Ni and Cu in urine. Thus, our findings may be associated with oxidative and inflammatory damage processes generated by the components contained in welding fumes, suggesting a high occupational risk in welding workers.


Subject(s)
Air Pollutants, Occupational/analysis , Biological Assay , Micronucleus Tests/methods , Occupational Exposure/analysis , Telomere , Biomarkers/analysis , Cytokinesis , DNA Damage , Humans , Lymphocytes , Oxidative Stress , Welding
13.
Mastology (Online) ; 31: 1-9, 2021.
Article in English | LILACS-Express | LILACS | ID: biblio-1292584

ABSTRACT

Objectives: To evaluate breast cancer (BC) patients treated with neoadjuvant chemotherapy (NACT) and to analyze clinicopathological features correlating with pathological complete response (PCR) and survival outcomes. Methods: Observational, descriptive, and retrospective study. The medical records of BC patients who underwent NACT were reviewed and analyzed using the Statistical Package for the Social Sciences (SPSS), version 20.0. Results: Of the 176 BC patints who underwent NACT, 62 patients (35.2%) achieved PCR. The PCR rate was 22% (n = 2) for luminal A, 15% (n = 9) for luminal B/HER2-negative, 45.5% (n = 15) for luminal B/ HER2-positive, 50% (n = 14) for non-luminal/HER2-positive, and 47.8% (n = 22) for triple-negative (p = 0.01). Histological grade, estrogen receptor (ER) expression, progesterone receptor (PR) expression, and HER2 status were significantly associated with PCR (p = 0.022, p = 0.01, p = 0.01, and p = 0.02, respectively). The median follow-up was 35.9 months, the estimated 5-year disease-free survival (DFS) was 96.7% in the PCR group and 83.2% in the non-PCR group (p = 0.05). The estimated 5-year overall survival (OS) was 95.5% in the PCR group and 69.1% in the non-PCR group (p = 0.017). Overall, 11 patients (6.25%) presented with locoregional recurrence (LRR), one (1.6%) in the PCR group and 10 (8.8%) in the non-PCR group (p = 0.10). Conclusion: We observed higher PCR rates in triple-negative and HER2-positive molecular subtypes. DFS and OS were significantly better in patients who achieved PCR, regardless of clinicopathological features. We also observed lower rates of LRR in the population that reached PCR.

14.
Genet Mol Biol ; 43(3): e20190134, 2020.
Article in English | MEDLINE | ID: mdl-32609278

ABSTRACT

Cell cycle alterations are among the principle hallmarks of cancer. Consequently, the study of cell cycle regulators has emerged as an important topic in cancer research, particularly in relation to environmental exposure. Particulate matter and coal dust around coal mines have the potential to induce cell cycle alterations. Therefore, in the present study, we performed chemical analyses to identify the main compounds present in two mineral coal samples from Colombian mines and performed systems chemo-biology analysis to elucidate the interactions between these chemical compounds and proteins associated with the cell cycle. Our results highlight the role of oxidative stress generated by the exposure to the residues of coal extraction, such as major inorganic oxides (MIOs), inorganic elements (IEs) and polycyclic aromatic hydrocarbons (PAH) on DNA damage and alterations in the progression of the cell cycle (blockage and/or delay), as well as structural dysfunction in several proteins. In particular, IEs such as Cr, Ni, and S and PAHs such as benzo[a]pyrene may have influential roles in the regulation of the cell cycle through DNA damage and oxidative stress. In this process, cyclins, cyclin-dependent kinases, zinc finger proteins such as TP53, and protein kinases may play a central role.

15.
J Biomater Appl ; 35(3): 353-370, 2020 09.
Article in English | MEDLINE | ID: mdl-32571172

ABSTRACT

Ti6Al4V used in biomedical applications still has several surface-related problems, such as poor bone compatibility and low wear resistance. In this work, the formation of a protective layer of titanium nitride obtained by plasma treatment in hollow cathode was studied, and the best experimental conditions were verified by a statistical factorial design of experiments. The samples were characterized in terms of their physical and chemical properties, correlating the effects of time (min) and temperature (°C). An achieved ideal condition was further analysed in terms of in vitro cytotoxicity, micro-abrasion, and electrochemical properties. The carried-out assessment has shown that nitrided condition has an improvement in wettability, microhardness, along with TixNy formation and roughness increment, when compared to pristine condition.


Subject(s)
Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Plasma Gases/chemistry , Titanium/chemistry , Animals , Cell Survival , Corrosion , Electrochemical Techniques , Electrodes , Humans , Mice , Surface Properties , Temperature , Time Factors , Wettability
16.
Environ Sci Pollut Res Int ; 27(16): 20516-20526, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32246425

ABSTRACT

Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 µm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.


Subject(s)
Occupational Exposure , Vehicle Emissions , DNA Damage , DNA Repair , Humans , Mouth Mucosa , Polymorphism, Genetic , X-ray Repair Cross Complementing Protein 1
17.
Mater Sci Eng C Mater Biol Appl ; 102: 264-275, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146999

ABSTRACT

Ultra-high molecular weight polyethylene (UHMWPE) is a prevailing bearing material applied in joint arthroplasty. Despite not being a novel biomaterial, its debris as consequence of long application and surface properties usually still lead to short lifespan. Many of the drawbacks are associated with sterilization methods that degrade the surface properties of UHMWPE. This work aims at improving the sterilizing treatment and also increasing material wettability, without losing bulk properties, which are essential for an orthopedic bearing. Cold plasma in hollow cathode setting was used for the material surface functionalization. Samples were characterized through contact angle (WCA), x-ray diffraction (XRD), optical microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and profilometry. Optimal points based on immediate surface wettability, shelf time and sterilization efficacy were chosen for biocompatibility evaluation. When comparing cell viability through MTT among treated samples (OP1, OP2 and UV), a slight reduction in OP2 viability could be seen after 7 days incubation, which is also observed in Giemsa staining and SEM images. In late incubation, OP1 loses its hydrophilic character and displays higher cell adhesion than its counterparts UV and OP2. At the end, OP2 showed less cells growing over the biomaterial after 7 days exposition compared to OP1 and UV. OP1 presented a more hydrophobic surface and improved cell adhesion, differently from OP2 and UV, which maintained their wettability conditions in late incubation. Cell analysis results indicate that surface wetting influences cell morphology and consequent cell adhesion, in which more hydrophobic surfaces are shown to favor fibroblast adhesion properties.


Subject(s)
Chemical Phenomena , Fibroblasts/cytology , Plasma Gases/chemistry , Polyethylenes/chemistry , Sterilization , Analysis of Variance , Animals , Apoptosis , Cell Adhesion , Cell Line , Cell Proliferation , Cell Shape , Cell Survival , Electrodes , Fibroblasts/ultrastructure , Mice
18.
Ecotoxicol Environ Saf ; 171: 264-273, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30612014

ABSTRACT

Diesel engine exhaust (DEE), which is the product of diesel combustion, is considered carcinogenic in humans. It comprises toxic gases, polycyclic aromatic hydrocarbons (PAHs) and particulate matter which can reach the pulmonary parenchyma and trigger various diseases, including cancer. The aim of the present study was to evaluate the potential cytotoxic and genotoxic effects of DEE exposure on peripheral blood and buccal epithelial cells in mechanics occupationally exposed to DEE. We recruited 120 exposed mechanics and 100 non-exposed control individuals. Significant differences were observed between the two groups in terms of percentage of tail DNA and damage index (DI) in the alkaline comet assay; levels of biomarkers by cytokinesis-block micronucleus cytome (CBMN-Cyt) assay; frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD) and apoptotic cells (APOP) and levels of biomarkers for micronucleus, karyorrhexis (KRX), karyolysis (KRL) and condensed chromatin (CC) by the buccal micronucleus cytome (BM-Cyt) assay. A significant and positive correlation was found between the frequency of MN in lymphocytes and buccal cells in the exposed group. Also, there was a significant correlation between age and percentage of tail DNA and DI in the comet assay, APOP and MN in the CBMN-Cyt assay and NBUD and MN in the BM-Cyt assay. Additionally, we found a positive and significant correlation of MN frequency in lymphocytes and buccal cells and age and MN frequency in lymphocytes with the time of service (years). Regarding lifestyle-related factors, a significant correlation was observed between meat and vitamin consumption and NBUD formation on CBMN-Cyt and between meat consumption and MN formation on CBMN-Cyt. Of the BM-Cyt biomarkers, there was a correlation between alcohol consumption and NBUD formation and between binucleated cell (BN), pyknosis (PYC), CC and KRL occurrence and family cancer history. These results are the first data in Colombia on the cytotoxic and genotoxic effects induced by continuous exposure to DEE and thus showed the usefulness of biomarkers of the comet, CBMN-Cyt and BM-Cyt assays for human biomonitoring and evaluation of cancer risk in the exposed populations.


Subject(s)
Air Pollutants, Occupational/toxicity , Apoptosis/drug effects , DNA Damage , Micronuclei, Chromosome-Defective/chemically induced , Occupational Exposure/adverse effects , Vehicle Emissions/toxicity , Cells, Cultured , Colombia , Comet Assay , Epithelial Cells/drug effects , Female , Humans , Lymphocytes/drug effects , Male , Micronucleus Tests/methods , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Occupational Exposure/analysis
19.
Mater Sci Eng C Mater Biol Appl ; 96: 539-551, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606564

ABSTRACT

Biomaterials can be applied in tissue engineering as scaffolds that resemble the extracellular matrix functioning as a temporary structure for cell proliferation and reconstruction of new organs and tissues. To evaluate the potential use of scaffolds as a biomaterial, this work proposes the development and characterization of polyurethane (PU), poly(D,L-lactic acid) (PDLLA) and polyurethane/poly(d,l-lactic acid) (PU/PDLLA) scaffolds produced by gas foaming technique. The neat polymers and the blends were characterized, in film form, by gel permeation chromatography (GPC), thermogravimetry (TG), differential scanning calorimetry (DSC) and field emission gun scanning electron microscopy (FEG-SEM). After supercritical fluid technology, in scaffolds form, the samples were characterized by FEG-SEM, pore size, density, cytotoxicity and cell adhesion. For film characterization the PU/PDLLA sample presented intermediate characteristics compared to the neat polymers, exhibiting the behavior of both polymers in the sample without phase separation in the FEG-SEM micrograph and bimodal molar weight distribution by GPC. The scaffolds showed interconnectivity and pore size of 141 µm ±â€¯108 µm for PUsc and 52 µm ±â€¯32 µm for PDLLAsc. The PU/PDLLAsc exhibited a bimodal structure in which the PU in the mixture revealed pores of 75 µm ±â€¯57 µm, while for PDLLA, the pore size was 19 µm ±â€¯12 µm. In vitro tests confirmed the adhesion of L929 cells to PUsc, PDLLAsc and PU/PDLLAsc, showing no cytotoxic effect. Finally, it can be concluded that it is possible to produce PU, PDLLA and PU/PDLLA scaffolds by supercritical fluid, which may be applied as biomaterials.


Subject(s)
Materials Testing , Polyesters , Polyurethanes , Tissue Scaffolds/chemistry , Animals , Biomedical Research , Cell Line , Mice , Polyesters/chemistry , Polyesters/pharmacology , Polyurethanes/chemistry , Polyurethanes/pharmacology
20.
Anticancer Res ; 38(11): 6231-6236, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30396942

ABSTRACT

BACKGROUND/AIM: Colorectal cancer is a common type of cancer with reported resistance to treatment, in most cases due to loss of function of apoptotic and cell-cycle proteins. Piperlongumine (PPLGM) is a natural alkaloid isolated from Piper species, with promising anti-cancer properties. This study investigated whether PPLGM is able to induce cell death in colorectal carcinoma HCT 116 cells expressing wild-type or deficient in Bax, p21 or p53. MATERIALS AND METHODS: PPLGM was extracted from roots of Piper tuberculatum. Cell viability was determined by reduction of 3-(4,5-dimethilthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assay. Cell death was evaluated by acridine orange/ethidium bromide staining and flow cytometry. Plasmid cleavage activity and circular dichroism DNA interaction were also analyzed. RESULTS: PPLGM induced selective cell death in all cell lines (IC50 range from 10.7 to 13.9 µM) with an increase in the number of late apoptotic cells and different profiles in cell-cycle distribution. Plasmid DNA analysis showed that PPLGM does not interact directly with DNA. CONCLUSION: This paper suggests that PPLGM may be a promising candidate in colorectal cancer therapy.


Subject(s)
Colorectal Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Dioxolanes/pharmacology , Tumor Suppressor Protein p53/genetics , bcl-2-Associated X Protein/genetics , Apoptosis , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...