Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Microb Genom ; 9(6)2023 06.
Article in English | MEDLINE | ID: mdl-37272917

ABSTRACT

Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide, but, unlike other foodborne pathogens, is not commonly reported as causing outbreaks. The population structure of the species is characterized by a high degree of genetic diversity, but the presence of stable clonally derived genotypes persisting in space and time, and potentially leading to diffuse outbreaks, has recently been identified. The spread of these recurring genotypes could be enhanced by wild birds, suspected to act as vectors for a wide range of microorganisms that can be transmissible to other animals or humans. This study assessed the genetic diversity of C. jejuni carriage in wild birds and surface waters to explore a potential link between these environments and the persistence over years of recurring lineages infecting humans in Luxembourg. These lineages corresponded to over 40 % of clinical isolates over a 4 year period from 2018 to 2021. While mainly exotic genotypes were recovered from environmental samples, 4 % of C. jejuni from wild birds corresponded to human recurring genotypes. Among them, a human clinical endemic lineage, occurring for over a decade in Luxembourg, was detected in one bird species, suggesting a possible contribution to the persistence of this clone and its multi-host feature. Whereas 27 % of wild birds were carriers of C. jejuni, confirming their role as spreader or reservoir, only three out of 59 genotypes overlapped with recurring human strains. While direct transmission of C. jejuni infection through wild birds remains questionable, they may play a key role in the environmental spreading of stable clones to livestock, and this issue merits further investigation.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Animals , Humans , Luxembourg/epidemiology , Campylobacter Infections/microbiology , Animals, Wild/microbiology , Birds/microbiology , Genotype
2.
Microorganisms ; 11(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36677413

ABSTRACT

As the world's leading cause of human gastro-enteritis, the food- and waterborne pathogen Campylobacter needs to be intensively monitored through a One Health approach. Particularly, wild birds have been hypothesized to contribute to the spread of human clinical recurring C. jejuni genotypes across several countries. A major concern in studying epidemiological dynamics is resolving the large genomic diversity of strains circulating in the environment and various reservoirs, challenging to achieve with isolation techniques. Here, we applied a passive-filtration method to obtain isolates and in parallel recovered genotypes from metagenomic sequencing data from associated filter sweeps. For genotyping mixed strains, a reference-based computational workflow to predict allelic profiles of nine extended-MLST loci was utilized. We validated the pipeline by sequencing artificial mixtures of C. jejuni strains and observed the highest prediction accuracy when including obtained isolates as references. By analyzing metagenomic samples, we were able to detect over 20% additional genetic diversity and observed an over 50% increase in the potential to connect genotypes across wild-bird samples. With an optimized filtration method and a computational approach for genotyping strain mixtures, we provide the foundation for future studies assessing C. jejuni diversity in environmental and clinical settings at improved throughput and resolution.

3.
Sci Total Environ ; 857(Pt 2): 159401, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36240930

ABSTRACT

Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Wastewater-Based Epidemiological Monitoring , Wastewater , Temperature , RNA, Viral , COVID-19/epidemiology
4.
Microbiologyopen ; 11(5): e1314, 2022 10.
Article in English | MEDLINE | ID: mdl-36314760

ABSTRACT

Despite the ubiquity of viruses in soils, their diversity in soil water has not been explored, mainly due to the difficulty of collecting them. In hydrology, soil water is usually collected using porous candles. This study proposes using these porous candles as a new tool for sampling viruses in soil water to analyze their passage through the ceramic part of the candles. The recovery of the viruses was determined after filtration under laboratory conditions using three model bacteriophages (MS2, ΦX174, and Φ6) and Escherichia coli, at neutral and acidic pH. Then, a field experiment was carried out where soil water filtration and viral identification by metagenomic shotgun were performed. At neutral pH, all bacteriophages tested successfully passed through the porous candles during the filtration process, with reductions of 0.02 log, 0.16 log, and 0.55 log for MS2 ΦX174 and Φ6, respectively. At pH 4.4, the passage of MS2 was not affected while ΦX174 underwent a slight reduction in recovery, probably caused by adsorption onto the filter material. Regarding the application of the porous candles in the field, the results obtained allowed the successful recovery of viruses, exposing porous candles as a new method suitable for the collection of viruses from soil water in the context of the study of viral communities.


Subject(s)
Bacteriophages , Viruses , Bacteriophages/genetics , Soil , Porosity , Water , Ceramics
5.
Microorganisms ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889177

ABSTRACT

Bacteriophages participate in soil life by influencing bacterial community structure and function, biogeochemical cycling and horizontal gene transfer. Despite their great abundance, diversity, and importance in microbial processes, they remain little explored in environmental studies. The influence of abiotic factors on the persistence of bacteriophages is now recognized; however, it has been mainly studied under experimental conditions. This study aimed to determine whether the abiotic factors well-known to influence bacteriophage persistence also control the natural distribution of the known DNA bacteriophage populations. To this end, soil from eight study sites including forests and grasslands located in the Attert River basin (Grand Duchy of Luxembourg) were sampled, covering different soil and land cover characteristics. Shotgun metagenomics, reference-based bioinformatics and statistical analyses allowed characterising the diversity of known DNA bacteriophage and bacterial communities. After combining soil properties with the identified DNA bacteriophage populations, our in-situ study highlighted the influence of pH and calcium cations on the diversity of the known fraction of the soil DNA bacteriophages. More interestingly, significant relationships were established between bacteriophage and bacterial populations. This study provides new insights into the importance of abiotic and biotic factors in the distribution of DNA bacteriophages and the natural ecology of terrestrial bacteriophages.

6.
Sci Total Environ ; 827: 154235, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35245552

ABSTRACT

Continuous surveillance of COVID-19 diffusion remains crucial to control its diffusion and to anticipate infection waves. Detecting viral RNA load in wastewater samples has been suggested as an effective approach for epidemic monitoring and the development of an effective warning system. However, its quantitative link to the epidemic status and the stages of outbreak is still elusive. Modelling is thus crucial to address these challenges. In this study, we present a novel mechanistic model-based approach to reconstruct the complete epidemic dynamics from SARS-CoV-2 viral load in wastewater. Our approach integrates noisy wastewater data and daily case numbers into a dynamical epidemiological model. As demonstrated for various regions and sampling protocols, it quantifies the case numbers, provides epidemic indicators and accurately infers future epidemic trends. Following its quantitative analysis, we also provide recommendations for wastewater data standards and for their use as warning indicators against new infection waves. In situations of reduced testing capacity, our modelling approach can enhance the surveillance of wastewater for early epidemic prediction and robust and cost-effective real-time monitoring of local COVID-19 dynamics.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , RNA, Viral , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
Diagnostics (Basel) ; 11(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34829296

ABSTRACT

There is a need for active molecular surveillance of human and veterinary Campylobacter infections. However, sequencing of all isolates is associated with high costs and a considerable workload. Thus, there is a need for a straightforward complementary tool to prioritize isolates to sequence. In this study, we proposed to investigate the ability of MALDI-TOF MS to pre-screen C. jejuni genetic diversity in comparison to MLST and cgMLST. A panel of 126 isolates, with 10 clonal complexes (CC), 21 sequence types (ST) and 42 different complex types (CT) determined by the SeqSphere+ cgMLST, were analysed by a MALDI Biotyper, resulting into one average spectra per isolate. Concordance and discriminating ability were evaluated based on protein profiles and different cut-offs. A random forest algorithm was trained to predict STs. With a 94% similarity cut-off, an AWC of 1.000, 0.933 and 0.851 was obtained for MLSTCC, MLSTST and cgMLST profile, respectively. The random forest classifier showed a sensitivity and specificity up to 97.5% to predict four different STs. Protein profiles allowed to predict C. jejuni CCs, STs and CTs at 100%, 93% and 85%, respectively. Machine learning and MALDI-TOF MS could be a fast and inexpensive complementary tool to give an early signal of recurrent C. jejuni on a routine basis.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21265059

ABSTRACT

We present COVID-19 Wastewater Analyser (CoWWAn) to reconstruct the epidemic dynamics from SARS-CoV-2 viral load in wastewater. As demonstrated for various regions and sampling protocols, this mechanistic model-based approach quantifies the case numbers, provides epidemic indicators and accurately infers future epidemic trends. In situations of reduced testing capacity, analysing wastewater data with CoWWAn is a robust and cost-effective alternative for real-time surveillance of local COVID-19 dynamics.

9.
Catheter Cardiovasc Interv ; 98(5): E687-E694, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34347935

ABSTRACT

OBJECTIVES: To investigate a novel suspended radiation shield (ZG), in reducing operator radiation exposure during cardiology interventions. BACKGROUND: Radiation exposure to the operator remains an occupational health hazard in the cardiac catheterization laboratory. METHODS: An anthropomorphic mannequin simulating an operator was placed near a phantom, simulating a patient. To measure the operator dose reduction, thermoluminescent detectors (TLDs) were inserted into the head and into the eye bulbs of the mannequin, while electronic dosimeters were positioned on the temple and at the level of the thyroid. Measurements were performed without and with the ZG system in place. Physician exposure was subsequently prospectively measured on the torso, on the left eye and on upper arm using the same electronic dosimeters, during clinical procedures (coronary angiography (CA) and percutaneous coronary intervention (PCI)). The physicians dose reduction was assessed by comparing operator dose when using traditional radioprotection garments (Phase 0) versus using the ZG system (Phase 1). RESULTS: Dose reductions as measured on the mannequin ranged from 66% to the head, to 100% to the torso. No dose was detected at the level of the torso and thyroid with ZG. When comparing CA and PCI procedures between Phase 0 and Phase 1, a significant difference (p < 0.001) was found for the left eye and the left wrist. Dose reduction as measured during clinical procedures for left eye/upper arm were on average 78.9%/95.6% for CA and 83.0%/93.0% for PCI, respectively (p < 0.001 for both). CONCLUSIONS: The ZG systems has a great potential to significantly reduce operator dose through the creation of a nearly zero-radiation work environment.


Subject(s)
Cardiology , Occupational Exposure , Percutaneous Coronary Intervention , Radiation Exposure , Radiation Protection , Coronary Angiography/adverse effects , Humans , Occupational Exposure/adverse effects , Percutaneous Coronary Intervention/adverse effects , Radiation Dosage , Radiation Exposure/adverse effects , Radiation Exposure/prevention & control , Radiography, Interventional/adverse effects , Risk Factors , Treatment Outcome
10.
Front Microbiol ; 12: 804484, 2021.
Article in English | MEDLINE | ID: mdl-35250909

ABSTRACT

While MALDI-TOF mass spectrometry (MS) is widely considered as the reference method for the rapid and inexpensive identification of microorganisms in routine laboratories, less attention has been addressed to its ability for detection of antimicrobial resistance (AMR). Recently, some studies assessed its potential application together with machine learning for the detection of AMR in clinical pathogens. The scope of this study was to investigate MALDI-TOF MS protein mass spectra combined with a prediction approach as an AMR screening tool for relevant foodborne pathogens, such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224 C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin, streptomycin, and ampicillin, independently, and were submitted, after an on- and off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average spectra per isolate and type of extraction. Overall, high performance was observed for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were reached. No significant prediction performance differences were observed between on- and off-plate types of protein extractions. Finally, three putative AMR biomarkers for fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current study. Combination of MALDI-TOF MS and machine learning could be an efficient and inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may enable a rapid initiation of a precise, targeted antibiotic treatment.

11.
Phys Med ; 76: 38-43, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32593137

ABSTRACT

PURPOSE: The aim of this study was to assess patient exposure data and operator dose in coronary interventional procedures, when considering patient body-mass index and procedure complexity. METHODS: Total air kerma area product (PKA), Air-Kerma (AK), Fluoroscopy time (FT), operator dose and patient body-mass index (BMI) from 97 patients' procedures (62 coronary angiography (CA) and 35 Percutaneous Coronary Intervention (PCI) were collected for one year. For PCI procedures, also the complexity index-CI was collected. Continuous variables for each of the 2 groups procedures (CA and PCI) were compared as medians with interquartile range and using Mann-Whitney U test. Multiple group data were compared using Kruskal-Wallis test (significance: p < 0.05). RESULTS: Median PKA was 63 and 125 Gy cm2 for CA and PCI respectively (p < 0.001); FT was 3 and 14 min, respectively (p < 0.001). PKA and FT significantly increased (p < 0.05) with BMI class for CA procedures. PKA and FT also increased in function of CI class for PCI, thought significantly only for FT (p < 0.001), possibly because of the low number of PCI procedures included; cine mode contributed most to PKA. Significant dose variability was observed among cardiologists for CA procedures (p < 0.001). CONCLUSIONS: Dose references levels for PKA and FT in interventional cardiology should be defined - on a sufficient number of procedures- in function of CI and BMI classes. These could provide an additional tool for refining a facility's quality assurance and optimization processes. Dose variability associated with cardiologists underlines the importance of continuous training.


Subject(s)
Percutaneous Coronary Intervention , Body Mass Index , Coronary Angiography , Fluoroscopy , Humans , Percutaneous Coronary Intervention/adverse effects , Radiation Dosage , Radiography, Interventional/adverse effects
12.
Microorganisms ; 7(12)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766422

ABSTRACT

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is today the reference method for direct identification of microorganisms in diagnostic laboratories, as it is notably time- and cost-efficient. In the context of increasing cases of enteric diseases with emerging multi-drug resistance patterns, there is an urgent need to adopt an efficient workflow to characterize antimicrobial resistance (AMR). Current approaches, such as antibiograms, are time-consuming and directly impact the "patient-physician" workflow. Through this mini-review, we summarize how the detection of specific patterns by MALDI-TOF MS, as well as bioinformatics, become more and more essential in research, and how these approaches will help diagnostics in the future. Along the same lines, the idea to export more precise biomarker identification steps by MALDI-TOF(/TOF) MS data towards AMR identification pipelines is discussed. The study also critically points out that there is currently still a lack of research data and knowledge on different foodborne pathogens as well as several antibiotics families such as macrolides and quinolones, and many questions are still remaining. Finally, the innovative combination of whole-genome sequencing and MALDI-TOF MS could be soon the future for diagnosis of antimicrobial resistance in foodborne pathogens.

13.
Int J Syst Evol Microbiol ; 69(12): 3969-3979, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31714200

ABSTRACT

During a study on the prevalence and diversity of members of the genus Campylobacter in a shellfish-harvesting area and its catchment in Brittany, France, six urease-positive isolates of members of the genus Campylobacter were recovered from surface water samples, as well as three isolates from stools of humans displaying enteric infection in the same period. These strains were initially identified as members of the Campylobacter lari group by MALDI-TOF mass spectrometry and placed into a distinct group in the genus Campylobacter, following atpA gene sequence analysis based on whole-genome sequencing data. This taxonomic position was confirmed by phylogenetic analysis of the 16S rRNA, rpoB and hsp60 (groEL) loci, and an analysis of the core genome that provided an improved phylogenetic resolution. The average nucleotide identity between the representative strain CA656T (CCUG 73571T=CIP 111675T) and the type strain of the most closely related species Campylobacter ornithocola WBE38T was 88.5 %. The strains were found to be microaerobic and anaerobic, motile, non-spore-forming, Gram-stain-negative, spiral-shaped bacteria that exhibit catalase, oxidase and urease activities but not nitrate reduction. This study demonstrates clearly that the nine isolates represent a novel species within the C. lari group, for which the name Campylobacter armoricus is proposed. Here, we present phenotypic and morphological features of the nine strains and the description of their genome sequences. The proposed type strain CA656T has a 1.589 Mbp chromosome with a DNA G+C content of 28.5 mol% and encodes 1588 predicted coding sequences, 38 tRNAs, and 3 rRNA operons.


Subject(s)
Campylobacter/classification , Feces/microbiology , Phylogeny , Water Microbiology , Bacterial Typing Techniques , Base Composition , Campylobacter/isolation & purification , DNA, Bacterial/genetics , France , Genes, Bacterial , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30649274

ABSTRACT

Riverbed sediment is commonly described as an enteric virus reservoir and thought to play an important role in water column contamination, especially during rainfall events. Although the occurrence and fate of faecal-derived viruses are fairly well characterized in water, little information is available on their presence as their interactions with sediment. This study aimed at determining the main environmental factors responsible for the presence of enteric viruses in riverbed sediment. Using a combination of microbiological and physico-chemical analyses of freshly field-sampled sediments, we demonstrated their contamination by faecal phages. The in situ spatial distribution of phages in sediment was mainly driven by sediment composition. A preferential phage accumulation occurred along one bank of the river, where the quantity of fine sands and clay particles smaller than 0.2 mm was the highest. Additionally, a mineralogical analysis revealed the influence of the heterogeneous presence of virus sorbents such as quartz, calcite, carbonates and iron-bearing phases (goethite) on the phage spatial pattern. A more precise knowledge of the composition of riverbed sediment is therefore useful for predicting preferential areas of enteric virus accumulation and should allow more accurate microbial risk assessment when using surface water for drinking water production or recreational activities.


Subject(s)
Environmental Monitoring , Geologic Sediments/virology , RNA Phages/isolation & purification , Rivers/virology , Water Pollutants/analysis , Feces/virology , Geologic Sediments/microbiology , Rivers/microbiology , Spatial Analysis , Water Pollution/analysis
15.
Food Environ Virol ; 11(1): 52-64, 2019 03.
Article in English | MEDLINE | ID: mdl-30426392

ABSTRACT

Lack of wastewater treatment efficiency causes receiving seawaters and bivalve molluscan shellfish to become contaminated, which can lead to public health issues. Six wastewater samples, five seawater samples and three batches of giant clams from Tahiti (French Polynesia) were investigated for the presence of enteric viruses, but also if present, for the diversity, infectivity and integrity of human adenoviruses (HAdV). Enteroviruses (EV), sapoviruses (SaV) and human polyomaviruses (HPyV) were detected in all wastewater samples. In decreasing frequency, noroviruses (NoV) GII and HAdV, rotaviruses (RoV), astroviruses (AsV), NoV GI and finally hepatitis E viruses (HEV) were also observed. Nine types of infectious HAdV were identified. HPyV and EV were found in 80% of seawater samples, NoV GII in 60%, HAdV and SaV in 40% and AsV and RoV in 20%. NoV GI and HEV were not detected in seawater. Intact and infectious HAdV-41 were detected in one of the two seawater samples that gave a positive qPCR result. Hepatitis A viruses were never detected in any water types. Analysis of transcriptomic data from giant clams revealed homologues of fucosyltransferases (FUT genes) involved in ligand biosynthesis that strongly bind to certain NoV strains, supporting the giant clams ability to bioaccumulate NoV. This was confirmed by the presence of NoV GII in one of the three batches of giant clams placed in a contaminated marine area. Overall, all sample types were positive for at least one type of virus, some of which were infectious and therefore likely to cause public health concerns.


Subject(s)
Bivalvia/virology , Seawater/virology , Viruses/isolation & purification , Wastewater/virology , Animals , Polymerase Chain Reaction , Polynesia , Seafood/virology , Viruses/genetics
16.
Oncotarget ; 9(45): 27809-27822, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29963239

ABSTRACT

APOBEC3 are cytidine deaminases that convert cytidine to uridine residues. APOBEC3A and APOBEC3B enzymes able to target genomic DNA are involved in oncogenesis of a sizeable proportion of human cancers. While the APOBEC3 locus is conserved in mammals, it encodes from 1-7 genes. APOBEC3A is conserved in most mammals, although absent in pigs, cats and throughout Rodentia whereas APOBEC3B is restricted to the Primate order. Here we show that the rabbit APOBEC3 locus encodes two genes of which APOBEC3A enzyme is strictly orthologous to human APOBEC3A. The rabbit enzyme is expressed in the nucleus and the cytoplasm, it can deaminate cytidine, 5-methcytidine residues, nuclear DNA and induce double-strand DNA breaks. The rabbit APOBEC3A enzyme is negatively regulated by the rabbit TRIB3 pseudokinase protein which is guardian of genome integrity, just like its human counterpart. This indicates that the APOBEC3A/TRIB3 pair is conserved over approximately 100 million years. The rabbit APOBEC3A gene is widely expressed in rabbit tissues, unlike human APOBEC3A. These data demonstrate that rabbit could be used as a small animal model for studying APOBEC3 driven oncogenesis.

17.
Int J Mol Sci ; 19(6)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29914107

ABSTRACT

The assumption that cellulose degradation and assimilation can only be carried out by heterotrophic organisms was shattered in 2012 when it was discovered that the unicellular green alga, Chlamydomonas reinhardtii (Cr), can utilize cellulose for growth under CO2-limiting conditions. Publications of genomes/transcriptomes of the colonial microalgae, Gonium pectorale (Gp) and Volvox carteri (Vc), between 2010⁻2016 prompted us to look for cellulase genes in these algae and to compare them to cellulases from bacteria, fungi, lower/higher plants, and invertebrate metazoans. Interestingly, algal catalytic domains (CDs), belonging to the family GH9, clustered separately and showed the highest (33⁻42%) and lowest (17⁻36%) sequence identity with respect to cellulases from invertebrate metazoans and bacteria, respectively, whereas the identity with cellulases from plants was only 27⁻33%. Based on comparative multiple alignments and homology models, the domain arrangement and active-site architecture of algal cellulases are described in detail. It was found that all algal cellulases are modular, consisting of putative novel cysteine-rich carbohydrate-binding modules (CBMs) and proline/serine-(PS) rich linkers. Two genes were found to encode a protein with a putative Ig-like domain and a cellulase with an unknown domain, respectively. A feature observed in one cellulase homolog from Gp and shared by a spinach cellulase is the existence of two CDs separated by linkers and with a C-terminal CBM. Dockerin and Fn-3-like domains, typically found in bacterial cellulases, are absent in algal enzymes. The targeted gene expression analysis shows that two Gp cellulases consisting, respectively, of a single and two CDs were upregulated upon filter paper addition to the medium.


Subject(s)
Cellulase/chemistry , Chlorophyta/enzymology , Plant Proteins/chemistry , Catalytic Domain , Cellulase/genetics , Cellulase/metabolism , Chlorophyta/genetics , Evolution, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Homology
18.
PLoS One ; 12(2): e0171705, 2017.
Article in English | MEDLINE | ID: mdl-28178322

ABSTRACT

The faecal indicator Escherichia coli plays a central role in water quality assessment and monitoring. It is therefore essential to understand its fate under various environmental constraints such as predation by bacterivorous zooplankton. Whereas most studies have examined how protozooplankton communities (heterotrophic nanoflagellates and ciliates) affect the fate of E. coli in water, the capacity of metazooplankton to control the faecal indicator remains poorly understood. In this study, we investigated how the common filter-feeding cladoceran, Daphnia pulex, affects the fate of E. coli under different experimental conditions. Daphnia ingested E. coli and increased its loss rates in water, but the latter rates decreased from 1.65 d-1 to 0.62 d-1 after a 1,000-fold reduction in E. coli initial concentrations, due to lower probability of encounter between Daphnia and E. coli. The combined use of culture and PMA qPCR (viability-qPCR) demonstrated that exposure to Daphnia did not result into the formation of viable but non-culturable E. coli cells. In lake water, a significant part of E. coli population loss was associated with matrix-related factors, most likely due to predation by other bacterivorous biota and/or bacterial competition. However, when exposing E. coli to a D. pulex gradient (from 0 to 65 ind.L-1), we observed an increasing impact of Daphnia on E. coli loss rates, which reached 0.47 d-1 in presence of 65 ind.L-1. Our results suggest that the filter-feeder can exert a non-negligible predation pressure on E. coli, especially during seasonal Daphnia population peaks. Similar trials using other Daphnia species as well as stressed E. coli cells will increase our knowledge on the capacity of this widespread zooplankter to control E. coli in freshwater resources. Based on our results, we strongly advocate the use of natural matrices to study these biotic interactions in order to avoid overestimation of Daphnia impact.


Subject(s)
Daphnia , Escherichia coli , Water Microbiology , Water , Animal Feed , Animals , Environmental Monitoring , Lakes , Microbial Viability
19.
Sci Total Environ ; 574: 960-968, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27668848

ABSTRACT

The association of viruses with settling particles is certainly a major process controlling the spread of viral pollution in surface water and sediment. To better understand the viral distribution in a river system, the behavior of F-specific RNA bacteriophages (FRNAPHs) was investigated in relationship with the suspended solids and sediment. The partitioning of phage particles (free or associated with solids) in surface water and the attachment capabilities of eight distinct strains of phages to sediment were studied in lab experiments. In situ observations were also performed with the genotyping of 166 individual plaques of FRNAPHs isolated from surface water and sediment. The results reported here demonstrate a variation of the status of infectious phages as a function of the hydro-climatological conditions. Phage-solid association seems to mainly occur during the peak of rainfall-runoff events but also to a certain extent during the recession phase compared to low flow conditions. The transfer of phages from the water column to sediment may occur at this time. Furthermore, the ability of FRNAPHs to interact with sediment was established for six strains out of eight, belonging to genogroups II, III and IV. A similar dynamic was observed for strains within a same genogroup despite different intensity of attachment and inactivation rates for strains of genogroups III and IV. The latter results match the in situ observations in the water and sediment compartments of the studied area. Infectious FRNAPH genogroup II was more abundant in sediment than in surface water. Its capability to sorb to sediment and its higher persistence in the environment compared to genogroups III and IV were the two main explanations. Together, lab and in situ experiments produce an overall vision of the mechanisms governing FRNAPH distribution among the water column and riverbed sediment.


Subject(s)
Environmental Pollution , Geologic Sediments , RNA Phages/physiology , Rivers/virology , Environmental Monitoring , Genotype , Luxembourg , RNA Phages/genetics
20.
Food Environ Virol ; 9(1): 89-102, 2017 03.
Article in English | MEDLINE | ID: mdl-27771874

ABSTRACT

The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.


Subject(s)
RNA Phages/isolation & purification , Rivers/virology , RNA Phages/classification , RNA Phages/genetics , Rivers/chemistry , Temperature , Water Pollution/analysis , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...