Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 346: 140569, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918533

ABSTRACT

2,4-D and fipronil are among Brazil's most used pesticides. The presence of these substances in surface waters is a concern for the aquatic ecosystem health. Thus, understanding the behavior of these substances under environmentally relevant conditions is essential for an effective risk assessment. This study aimed to determine the degradation profiles of 2,4-D and fipronil after controlled application in aquatic mesocosm systems under influencing factors such as environmental aspects and vinasse application, evaluate pesticide dissipation at the water-sediment interface, and perform an environmental risk assessment in water and sediment compartments. Mesocosm systems were divided into six different treatments, namely: control (C), vinasse application (V), 2,4-D application (D), fipronil application (F), mixture of 2,4-D and fipronil application (M), and mixture of 2,4-D and fipronil with vinasse application (MV). Pesticide application was performed according to typical Brazilian sugarcane management procedures, and the experimental systems were monitored for 150 days. Pesticide dissipation kinetics was modeled using first-order reaction models. The estimated half-life times of 2,4-D were 18.2 days for individual application, 50.2 days for combined application, and 9.6 days for combined application with vinasse. For fipronil, the respective half-life times were 11.7, 13.8, and 24.5 days. The dynamics of pesticides in surface waters resulted in the deposition of these compounds in the sediment. Also, fipronil transformation products fipronil-sulfide and fipronil-sulfone were quantified in water 21 days after pesticide application. Finally, performed risk assessments showed significant potential risk to environmental health, with RQ values for 2,4-D up to 1359 in freshwater and 98 in sediment, and RQ values for fipronil up to 22,078 in freshwater and 2582 in sediment.


Subject(s)
Pesticides , Water Pollutants, Chemical , Ecosystem , Water Pollutants, Chemical/analysis , Pesticides/toxicity , Pesticides/analysis , Water , 2,4-Dichlorophenoxyacetic Acid/toxicity
2.
Chemosphere ; 307(Pt 2): 135959, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35944683

ABSTRACT

Near-shore marine/estuarine environments play an important role in the functioning of the marine ecosystem and are extremely vulnerable to the presence of chemical pollution. The ability to investigate the effects of pollution is limited by a lack of model organisms for which sufficient ecotoxicological information is available, and this is particularly true for tropical regions. The circumtropical marine amphipod Parhyale hawaiensis has become an important model organism in various disciplines, and here we summarize the scientific literature regarding the emergence of this model within ecotoxicology. P. hawaiensis is easily cultured in the laboratory and standardized ecotoxicity protocols have been developed and refined (e.g., miniaturized), and effects of toxicants on acute toxicity (Cd, Cu, Zn, Ag, ammonia, dyes, pesticides, environmental samples), genotoxicity as comet assay/micronuclei, and gene expression (Ag ion and Ag nanoparticles) and regeneration (pesticides) have been published. Methods for determination of internal concentrations of metals (Cu and Ag) and organic substances (synthetic dye) in hemolymph were successfully developed providing sources for the establishment of toxicokinetics models in aquatic amphipods. Protocols to evaluate reproduction and growth, for testing immune responses and DNA damage in germ cells are under way. The sensitivity of P. hawaiensis, measured as 50% lethal concentration (LC50), is in the same range as other amphipods. The combination of feasibility to culture P. hawaiensis in laboratory, the recent protocols for ecotoxicity evaluation and the rapidly expanding knowledge on its biology make it especially attractive as a model organism and promising tool for risk assessment evaluations in tropical environments.


Subject(s)
Amphipoda , Metal Nanoparticles , Pesticides , Water Pollutants, Chemical , Ammonia , Animals , Cadmium/pharmacology , Coloring Agents/pharmacology , Ecosystem , Ecotoxicology , Pesticides/analysis , Silver/toxicity , Water Pollutants, Chemical/metabolism
3.
Toxicon ; 211: 70-78, 2022 May.
Article in English | MEDLINE | ID: mdl-35306038

ABSTRACT

The process of eutrophication and consequent proliferation of cyanobacteria in rivers and lakes leads to increasing numbers of harmful algal blooms and higher concentration of toxic metabolites in freshwater bodies. Microcystin is a toxic metabolite produced by cyanobacteria that is frequently detected and can pose health risks to important freshwater species including fish. The aim of the present study was to evaluate the effects of microcystin-LR on the morphology of Astyanax altiparanae's liver and muscle. One hundred (n = 100) Astyanax altiparanae were divided into 5 groups (n = 20) with 24 h and 96 h of microcystin exposition at two doses of 0.5 and 1.0 µg/L. Differences were observed in the microcystin treatment with respect to histopathological analyses including cytoplastic degradation, displacement, and increase in nuclei volume and area of hepatocytes. Hyperemia and dilation of blood capillaries were seen in the liver. There were also observable changes in the size of muscle fibers and muscle inflammation. Our results demonstrate that microcystins can impact the integrity of both tissues even at sublethal concentrations. Low doses of microcystins are therefore sufficient to intoxicate fish livers and muscle tissues.


Subject(s)
Harmful Algal Bloom , Microcystins , Animals , Lakes/analysis , Liver , Marine Toxins , Microcystins/analysis , Muscles/chemistry
4.
Environ Pollut ; 260: 113963, 2020 May.
Article in English | MEDLINE | ID: mdl-32004961

ABSTRACT

Analysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions. To investigate whether response to metals in crustaceans differs according to sex we analyzed the amphipod Parhyale hawaiensis after exposure to AgCl and Ag nanoparticles (AgNP) via contaminated food. Gene specific analysis and whole genome transcriptional profile of male and female organisms were performed by both RT-qPCR and RNA-seq. We observed that expression of transcripts of genes glutathione transferase (GST) did not differ among AgCl and AgNP treatments. Significant differences between males and females were observed after exposure to AgCl and AgNP. Males presented twice the number of differentially expressed genes in comparison to females, and more differentially expressed were observed after exposure to AgNP than AgCl treatments in both sexes. The genes that had the greatest change in expression relative to control were those genes related to peptidase and catalytic activity and chitin and carbohydrate metabolic processes. Our study is the first to demonstrate sex specific differences in the transcriptomes of amphipods upon exposure to toxicants and emphasizes the importance of considering gender in ecotoxicology.


Subject(s)
Amphipoda/genetics , Metal Nanoparticles , Silver/toxicity , Animals , Ecotoxicology , Female , Gene Expression Profiling , Male , Transcriptome
5.
Toxins (Basel) ; 11(4)2019 04 13.
Article in English | MEDLINE | ID: mdl-31013880

ABSTRACT

Absorption and accumulation of bioavailable cyanobacterial metabolites (including cyanotoxins) are likely in fish after senescence and the rupturing of cells during bloom episodes. We determined the toxicity of cyanopeptides identified from two strains of Microcystis (M. panniformis MIRS-04 and M. aeruginosa NPDC-01) in a freshwater tropical fish, Astyanax altiparanae (yellowtail tetra, lambari). Aqueous extracts of both Microcystis strains were prepared in order to simulate realistic fish exposure to these substances in a freshwater environment. Both strains were selected because previous assays evidenced the presence of microcystins (MCs) in MIRS-04 and lack of cyanotoxins in NPDC-01. Identification of cyanobacterial secondary metabolites was performed by LC-HR-QTOF-MS and quantification of the MC-LR was carried out by LC-QqQ-MS/MS. MIRS-04 produces the MCs MC-LR, MC-LY and MC-HilR as well as micropeptins B, 973, 959 and k139. NPCD-01 biosynthetizes microginins FR1, FR2/FR4 and SD-755, but does not produce MCs. Larval fish survival and changes in morphology were assessed for 96 h exposure to aqueous extracts of both strains at environmentally relevant concentrations from 0.1 to 0.5 mg (dry weight)/mL, corresponding to 0.15 to 0.74 µg/mL of MC-LR (considering dried amounts of MIRS-04 for comparison). Fish mortality increased with concentration and time of exposure for both strains of Microcystis. The frequencies of morphological abnormalities increased with concentration in both strains, and included abdominal and pericardial oedema, and spinal curvature. Results demonstrate that toxicity was not solely caused by MCs, other classes of cyanobacterial secondary metabolites contributed to the observed toxicity.


Subject(s)
Bacterial Toxins/toxicity , Characidae/abnormalities , Larva/drug effects , Microcystis , Peptides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Larva/growth & development
6.
Mar Pollut Bull ; 139: 157-162, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30686414

ABSTRACT

Microplastics (MPs) are contaminants of environmental concern that represent a threat to marine systems. Here we report data on the abundance and characteristics of MPs collected from surface waters of the urban Guanabara Bay. Samples were collected, by horizontal trawling of a plankton net on two occasions (summer of 2016). The MPs were obtained from samples by sieving and particles were manually sorted with microscope. Characterization of MPs was accomplished by gravimetry and digital image processing (for quantification and morphology categorization), and chemical composition identified by infrared spectroscopy and elemental analyses. Total MPs ranged from 1.40 to 21.3 particles/m3, which places Guanabara Bay amongst the most contaminated coastal systems worldwide by microplastics. Polyethylene and polypropylene polymers ≤1 mm were the most abundant particles. Therefore, the occurrence of MPs in Guanabara Bay is relevant to understand ecological hazards of exposition to marine biota and merits further investigation.


Subject(s)
Bays/chemistry , Environmental Monitoring/methods , Plastics/analysis , Water Pollutants, Chemical/analysis , Brazil , Seasons , Urbanization
7.
Environ Toxicol Chem ; 38(4): 806-810, 2019 04.
Article in English | MEDLINE | ID: mdl-30638280

ABSTRACT

On release into surface waters, engineered silver nanoparticles (AgNPs) tend to settle to sediments and, consequently, epibenthic fauna will be exposed to them through diet. We established Ag uptake and accumulation profiles over time in the hemolymph of a marine amphipod fed with a formulated feed containing AgNPs or AgCl. Silver bioavailability was higher in organisms exposed to AgNPs, indicating that the nanoparticles pose a higher risk of toxicity compared to similar concentrations of AgCl. Environ Toxicol Chem 2019;38:806-810. © 2019 SETAC.


Subject(s)
Amphipoda , Dietary Exposure/analysis , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Amphipoda/metabolism , Animals , Biological Availability , Hemolymph/chemistry , Silver/metabolism , Silver Compounds/metabolism , Silver Compounds/toxicity , Water Pollutants, Chemical/metabolism
8.
Ecotoxicology ; 27(2): 103-108, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29138970

ABSTRACT

There is a lack of suitable tropical marine species for ecotoxicity tests. An attractive model organism for ecotoxicology is the marine amphipod Parhyale hawaiensis, which is already a model for genetic and developmental studies. This species is widespread, can tolerate changes in salinity, is easy to handle and is representative of circumtropical regions. The aim of this work was to describe standardized procedures for laboratory husbandry, define conditions for acute toxicity tests, and to provide acute toxicity test results for some reference toxicants. Culturing conditions for the organism in the laboratory were established in reconstituted seawater (30 ± 2 salinity), 24 ± 2 °C, photoperiod 12/12 h light/dark. Acute toxicity test procedures were developed for 96 h-exposure time, and organisms at ages <7 days. The miniaturized version of the test, based on 96-well microplates and 200 µL of exposure media provided consistent results compared to larger exposure volumes (80-mL vials protocol). Acute toxicity of Ag, Cd, Cu, Zn and ammonia determined for P. hawaiensis were consistent to previous results for other marine amphipods. We conclude that P. hawaiensis can be successfully cultured in standardized conditions and be effectively used in acute toxicity testing. Further development and use of this model will enable standardized and reproducible ecotoxicology investigations in understudied and vulnerable tropical marine ecosystems.


Subject(s)
Amphipoda/physiology , Ecotoxicology , Toxicity Tests, Acute/methods , Animals , Models, Animal , Seawater
9.
Chemosphere ; 156: 95-100, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27174821

ABSTRACT

Water quality criteria to protect aquatic life are not available for most disperse dyes which are often used as commercial mixtures in textile coloration. In this study, the acute and chronic toxicity of the commercial dye Disperse Red 1 (DR1) to eight aquatic organisms from four trophic levels was evaluated. A safety threshold, i.e. Predicted No-Effect Concentration (PNEC), was derived based on the toxicity information of the commercial product and the purified dye. This approach was possible because the toxicity of DR1 was accounting for most of the toxicity of the commercial mixture. A long-term PNEC of 60 ng L(-1) was proposed, based on the most sensitive chronic endpoint for Daphnia similis. A short-term PNEC of 1800 ng L(-1) was proposed based on the most sensitive acute endpoint also for Daphnia similis. Both key studies have been evaluated with the new "Criteria for Reporting and Evaluating ecotoxicity Data" (CRED) methodology, applying more objective criteria to assess the quality of toxicity tests, resulting in two reliable and relevant endpoints with only minor restrictions. HPLC-MS/MS was used to quantify the occurrence of DR1 in river waters of three sites, influenced by textile industry discharges, resulting in a concentration range of 50-500 ng L(-1). The risk quotients for DR1 obtained in this work suggest that this dye can pose a potential risk to freshwater biota. To reduce uncertainty of the derived PNEC, a fish partial or full lifecycle study should be performed.


Subject(s)
Azo Compounds/toxicity , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Animals , Fresh Water , Risk Assessment , Tandem Mass Spectrometry , Textile Industry , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL