Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vector Borne Zoonotic Dis ; 21(7): 509-516, 2021 07.
Article in English | MEDLINE | ID: mdl-33956519

ABSTRACT

Two abundant species of aggressive ticks commonly feed on humans in Georgia: the Gulf Coast tick (Amblyomma maculatum) and the Lone Star tick (A. americanum). A. maculatum is the primary host of Rickettsia parkeri, "Candidatus Rickettsia andeanae," and a Francisella-like endosymbiont (AmacFLE), whereas A. americanum is the primary host for R. amblyommatis, Ehrlichia chaffeensis, E. ewingii, and a Coxiella-like endosymbiont (AamCLE). Horizontal transmission of R. parkeri from A. maculatum to A. americanum by co-feeding has been described, and R. amblyommatis has been found infrequently in A. maculatum ticks. We assessed the prevalence of these agents and whether exchange of tick-associated bacteria is common between A. maculatum and A. americanum collected from the same field site. Unengorged ticks were collected May-August 2014 in west-central Georgia from a 4.14 acre site by flagging and from humans and canines traversing that site. All DNA samples were screened with quantitative PCR assays for the bacteria found in both ticks, and the species of any Rickettsia detected was identified by species-specific TaqMan assays or sequencing of the rickettsial ompA gene. Only R. amblyommatis (15) and AamCLE (39) were detected in 40 A. americanum, while the 74 A. maculatum only contained R. parkeri (30), "Candidatus Rickettsia andeanae" (3), and AmacFLE (74). Neither tick species had either Ehrlichia species. Consequently, we obtained no evidence for the frequent exchange of these tick-borne agents in a natural setting despite high levels of carriage of each agent and the common observance of infestation of both ticks on both dogs and humans at this site. Based on these data, exchange of these Rickettsia, Coxiella, and Francisella agents between A. maculatum and A. americanum appears to be an infrequent event.


Subject(s)
Ehrlichia chaffeensis , Francisella , Ixodidae , Rickettsia , Amblyomma , Animals , Coxiella , Dogs , Francisella/genetics , Georgia/epidemiology , Rickettsia/genetics
2.
Ticks Tick Borne Dis ; 11(4): 101453, 2020 07.
Article in English | MEDLINE | ID: mdl-32439385

ABSTRACT

The lone star tick (Amblyomma americanum) is the most common and abundant human-biting tick in the southeastern United States where spotted fever rickettsioses frequently occur. However, the role of this tick in transmitting and maintaining pathogenic and non-pathogenic spotted fever group rickettsiae (SFGR) remains poorly defined. This is partially due to the high prevalence and abundance of Rickettsia amblyommatis in most populations of A. americanum. Many molecular assays commonly employed to detect rickettsiae use PCR primers that target highly conserved regions in the SFGR so low abundance rickettsia may not be detected when R. amblyommatis is present. It is costly and inefficient to test for low abundance rickettsial agents with multiple individual specific assays even when they are multiplexed, as most samples will be negative. Real time PCR assays may also be hampered by inadequate limits of detection (LODs) for low abundance agents. We exploited the absence of an otherwise relatively SFGR-conserved genome region in R. amblyommatis to design a hemi-nested PCR-assay which has a sensitivity of 10 copies in detecting the presence of most SFGR, but not R. amblyommatis in DNA of infected lone star ticks. This deletion is conserved in 21 isolates of R. amblyommatis obtained from multiple states. We demonstrated the assay's utility by detecting a pathogenic SFGR, Rickettsia parkeri, in 15/50 (30 %) of field collected A. americanum ticks that were previously screened with conventional assays and found to be positive for R. amblyommatis. These co-infected ticks included 1 questing female, 6 questing nymphs, and 8 attached males. The high prevalence of R. parkeri among host-attached ticks may be due to several variables and does not necessarily reflect the risk of disease transmission from attached ticks to vertebrate hosts. This novel assay can provide accurate estimates of the prevalence of less common SFGR in A. americanum and thus improve our understanding of the role of this tick in the maintenance and transmission of the SFGR commonly responsible for human rickettsioses.


Subject(s)
Amblyomma/microbiology , Real-Time Polymerase Chain Reaction/veterinary , Rickettsia/isolation & purification , Amblyomma/growth & development , Animals , Female , Male , Nymph/growth & development , Nymph/microbiology , Real-Time Polymerase Chain Reaction/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...