Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659969

ABSTRACT

Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multi-organ involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong antibody production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 weeks after infection. Therefore, we hypothesized that dysfunctional cell-mediated antibody responses downstream of antibody production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, while natural killer (NK) cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Together, our results reveal dysregulation in antibody-mediated cellular responses unique to MIS-C that likely contribute to the immune pathology of this disease.

2.
J Pathol ; 260(3): 289-303, 2023 07.
Article in English | MEDLINE | ID: mdl-37186300

ABSTRACT

Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Hyaluronic Acid/metabolism , Extracellular Matrix Proteins/metabolism , Hyaluronan Receptors/metabolism , Tumor Microenvironment
3.
Oncogene ; 40(43): 6166-6179, 2021 10.
Article in English | MEDLINE | ID: mdl-34535769

ABSTRACT

The transcription factors PAX5, IKZF1, and EBF1 are frequently mutated in B cell acute lymphoblastic leukemia (B-ALL). We demonstrate that compound heterozygous loss of multiple genes critical for B and T cell development drives transformation, including Pax5+/-xEbf1+/-, Pax5+/-xIkzf1+/-, and Ebf1+/-xIkzf1+/- mice for B-ALL, or Tcf7+/-xIkzf1+/- mice for T-ALL. To identify genetic defects that cooperate with Pax5 and Ebf1 compound heterozygosity to initiate leukemia, we performed a Sleeping Beauty (SB) transposon screen that identified cooperating partners including gain-of-function mutations in Stat5b (~65%) and Jak1 (~68%), or loss-of-function mutations in Cblb (61%) and Myb (32%). These findings underscore the role of JAK/STAT5B signaling in B cell transformation and demonstrate roles for loss-of-function mutations in Cblb and Myb in transformation. RNA-Seq studies demonstrated upregulation of a PDK1>SGK3>MYC pathway; treatment of Pax5+/-xEbf1+/- leukemia cells with PDK1 inhibitors blocked proliferation in vitro. In addition, we identified a conserved transcriptional gene signature between human and murine leukemias characterized by upregulation of myeloid genes, most notably involving the GM-CSF pathway, that resemble a B cell/myeloid mixed-lineage leukemia. Thus, our findings identify multiple mechanisms that cooperate with defects in B cell transcription factors to generate either progenitor B cell or mixed B/myeloid-like leukemias.


Subject(s)
Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Transcription Factors/genetics , Transposases/genetics , Animals , Gain of Function Mutation , Genetic Testing , Humans , Loss of Function Mutation , Mice , PAX5 Transcription Factor/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Sequence Analysis, RNA , Signal Transduction , Trans-Activators/genetics
4.
Cancer Res ; 80(20): 4335-4345, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32747365

ABSTRACT

Multiple studies have identified transcriptome subtypes of high-grade serous ovarian carcinoma (HGSOC), but their interpretation and translation are complicated by tumor evolution and polyclonality accompanied by extensive accumulation of somatic aberrations, varying cell type admixtures, and different tissues of origin. In this study, we examined the chronology of HGSOC subtype evolution in the context of these factors using a novel integrative analysis of absolute copy-number analysis and gene expression in The Cancer Genome Atlas complemented by single-cell analysis of six independent tumors. Tumor purity, ploidy, and subclonality were reliably inferred from different genomic platforms, and these characteristics displayed marked differences between subtypes. Genomic lesions associated with HGSOC subtypes tended to be subclonal, implying subtype divergence at later stages of tumor evolution. Subclonality of recurrent HGSOC alterations was evident for proliferative tumors, characterized by extreme genomic instability, absence of immune infiltration, and greater patient age. In contrast, differentiated tumors were characterized by largely intact genome integrity, high immune infiltration, and younger patient age. Single-cell sequencing of 42,000 tumor cells revealed widespread heterogeneity in tumor cell type composition that drove bulk subtypes but demonstrated a lack of intrinsic subtypes among tumor epithelial cells. Our findings prompt the dismissal of discrete transcriptome subtypes for HGSOC and replacement by a more realistic model of continuous tumor development that includes mixtures of subclones, accumulation of somatic aberrations, infiltration of immune and stromal cells in proportions correlated with tumor stage and tissue of origin, and evolution between properties previously associated with discrete subtypes. SIGNIFICANCE: This study infers whether transcriptome-based groupings of tumors differentiate early in carcinogenesis and are, therefore, appropriate targets for therapy and demonstrates that this is not the case for HGSOC.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Female , Gene Expression Profiling , Genomic Instability , Humans , Ploidies , Single-Cell Analysis
5.
Clin Cancer Res ; 26(8): 1965-1976, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31932493

ABSTRACT

PURPOSE: Prostate cancer is the second leading cause of male cancer deaths. Castration-resistant prostate cancer (CRPC) is a lethal stage of the disease that emerges when endocrine therapies are no longer effective at suppressing activity of the androgen receptor (AR) transcription factor. The purpose of this study was to identify genomic mechanisms that contribute to the development and progression of CRPC. EXPERIMENTAL DESIGN: We used whole-genome and targeted DNA-sequencing approaches to identify mechanisms underlying CRPC in an aggregate cohort of 272 prostate cancer patients. We analyzed structural rearrangements at the genome-wide level and carried out a detailed structural rearrangement analysis of the AR locus. We used genome engineering to perform experimental modeling of AR gene rearrangements and long-read RNA sequencing to analyze effects on expression of AR and truncated AR variants (AR-V). RESULTS: AR was among the most frequently rearranged genes in CRPC tumors. AR gene rearrangements promoted expression of diverse AR-V species. AR gene rearrangements occurring in the context of AR amplification correlated with AR overexpression. Cell lines with experimentally derived AR gene rearrangements displayed high expression of tumor-specific AR-Vs and were resistant to endocrine therapies, including the AR antagonist enzalutamide. CONCLUSIONS: AR gene rearrangements are an important mechanism of resistance to endocrine therapies in CRPC.


Subject(s)
Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Gene Rearrangement , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Whole Genome Sequencing/methods , Androgen Receptor Antagonists/pharmacology , Benzamides , Cell Line, Tumor , Humans , Male , Neoplasm Metastasis , Nitriles , Phenylthiohydantoin/pharmacology , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/chemistry
6.
Nat Immunol ; 20(2): 195-205, 2019 02.
Article in English | MEDLINE | ID: mdl-30643267

ABSTRACT

The developmental programs that generate a broad repertoire of regulatory T cells (Treg cells) able to respond to both self antigens and non-self antigens remain unclear. Here we found that mature Treg cells were generated through two distinct developmental programs involving CD25+ Treg cell progenitors (CD25+ TregP cells) and Foxp3lo Treg cell progenitors (Foxp3lo TregP cells). CD25+ TregP cells showed higher rates of apoptosis and interacted with thymic self antigens with higher affinity than did Foxp3lo TregP cells, and had a T cell antigen receptor repertoire and transcriptome distinct from that of Foxp3lo TregP cells. The development of both CD25+ TregP cells and Foxp3lo TregP cells was controlled by distinct signaling pathways and enhancers. Transcriptomics and histocytometric data suggested that CD25+ TregP cells and Foxp3lo TregP cells arose by coopting negative-selection programs and positive-selection programs, respectively. Treg cells derived from CD25+ TregP cells, but not those derived from Foxp3lo TregP cells, prevented experimental autoimmune encephalitis. Our findings indicate that Treg cells arise through two distinct developmental programs that are both required for a comprehensive Treg cell repertoire capable of establishing immunotolerance.


Subject(s)
Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymphoid Progenitor Cells/physiology , T-Lymphocytes, Regulatory/physiology , Thymus Gland/growth & development , Animals , Autoantigens/immunology , Colitis/immunology , Disease Models, Animal , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Freund's Adjuvant/administration & dosage , Freund's Adjuvant/immunology , Humans , Immune Tolerance/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphoid Progenitor Cells/transplantation , Mice , Mice, Transgenic , Mycobacterium tuberculosis/immunology , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , Signal Transduction , Specific Pathogen-Free Organisms , Thymus Gland/cytology , Thymus Gland/immunology
7.
Immunity ; 48(4): 760-772.e4, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29625893

ABSTRACT

Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.


Subject(s)
Interleukin-10/immunology , Interleukin-15/immunology , Killer Cells, Natural/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/immunology , Proteins/pharmacology , Animals , Blood-Brain Barrier/pathology , Brain/immunology , Brain/pathology , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/biosynthesis , Lymphocyte Activation/immunology , Malaria, Cerebral/microbiology , Malaria, Cerebral/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Fusion Proteins
8.
Nat Immunol ; 18(6): 694-704, 2017 06.
Article in English | MEDLINE | ID: mdl-28369050

ABSTRACT

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , B-Lymphocytes , Gene Expression Regulation, Neoplastic , Ikaros Transcription Factor/genetics , Pre-B Cell Receptors/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , STAT5 Transcription Factor/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Chromatin Immunoprecipitation , Flow Cytometry , Humans , Interferon Regulatory Factors/genetics , Mice , Multiplex Polymerase Chain Reaction , NF-kappa B p50 Subunit/genetics , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Protein Kinase C beta/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Survival Rate , Trans-Activators/genetics
9.
J Immunol ; 197(4): 1460-70, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27385777

ABSTRACT

Invariant NKT cells differentiate into three predominant effector lineages in the steady state. To understand these lineages, we sorted undifferentiated invariant NK T progenitor cells and each effector population and analyzed their transcriptional profiles by RNAseq. Bioinformatic comparisons were made to effector subsets among other lymphocytes, specifically Th cells, innate lymphoid cells (ILC), and γδ T cells. Myc-associated signature genes were enriched in NKT progenitors, like in other hematopoietic progenitors. Only NKT1 cells, but not NKT2 and NKT17 cells, had transcriptome similarity to NK cells and were also similar to other IFN-γ-producing lineages such as Th1, ILC1, and intraepithelial γδ T cells. NKT2 and NKT17 cells were similar to their analogous subsets of γδ T cells and ILCs, but surprisingly, not to Th2 and Th17 cells. We identified a set of genes common to each effector lineage regardless of Ag receptor specificity, suggesting the use of conserved regulatory cores for effector function.


Subject(s)
Cell Lineage/immunology , Natural Killer T-Cells/immunology , T-Lymphocyte Subsets/immunology , Transcriptome , Animals , Cell Differentiation/immunology , Cell Lineage/genetics , Flow Cytometry , Immunity, Innate/genetics , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Polymerase Chain Reaction , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes/immunology , T-Lymphocytes, Helper-Inducer/immunology
10.
Breast Cancer Res ; 17: 19, 2015.
Article in English | MEDLINE | ID: mdl-25837326

ABSTRACT

INTRODUCTION: Targeted therapies for aggressive breast cancers like triple negative breast cancer (TNBC) are needed. The use of small interfering RNAs (siRNAs) to disable expression of survival genes provides a tool for killing these cancer cells. Cyclin dependent kinase 11 (CDK11) is a survival protein kinase that regulates RNA transcription, splicing and mitosis. Casein kinase 2 (CK2) is a survival protein kinase that suppresses cancer cell death. Eliminating the expression of these genes has potential therapeutic utility for breast cancer. METHODS: Expression levels of CDK11 and CK2 mRNAs and associated proteins were examined in breast cancer cell lines and tissue arrays. RNA expression levels of CDC2L1, CDC2L2, CCNL1, CCNL2, CSNK2A1, CSNK2A2, and CSNK2B genes in breast cancer subtypes were analyzed. Effects following transfection of siRNAs against CDK11 and CK2 in cultured cells were examined by viability and clonal survival assays and by RNA and protein measures. Uptake of tenfibgen (TBG) nanocapsules by TNBC cells was analyzed by fluorescence-activated cell sorting. TBG nanocapsules delivered siRNAs targeting CDK11 or CK2 in mice carrying TNBC xenograft tumors. Transcript cleavage and response parameters were evaluated. RESULTS: We found strong CDK11 and CK2 mRNA and protein expression in most human breast cancer cells. Immunohistochemical analysis of TNBC patient tissues showed 100% of tumors stained positive for CDK11 with high nuclear intensity compared to normal tissue. The Cancer Genome Atlas analysis comparing basal to other breast cancer subtypes and to normal breast revealed statistically significant differences. Down-regulation of CDK11 and/or CK2 in breast cancer cells caused significant loss of cell viability and clonal survival, reduced relevant mRNA and protein expression, and induced cell death changes. TBG nanocapsules were taken up by TNBC cells both in culture and in xenograft tumors. Treatment with TBG- siRNA to CDK11 or TBG- siRNA to CK2αα' nanocapsules induced appropriate cleavage of CDK11 and CK2α transcripts in TNBC tumors, and caused MDA-MB-231 tumor reduction, loss of proliferation, and decreased expression of targeted genes. CONCLUSIONS: CDK11 and CK2 expression are individually essential for breast cancer cell survival, including TNBC. These genes serve as promising new targets for therapeutic development in breast cancer.


Subject(s)
Casein Kinase II/genetics , Cyclin-Dependent Kinases/genetics , RNA Interference , RNA, Small Interfering/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Casein Kinase II/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Cyclin-Dependent Kinases/metabolism , Disease Models, Animal , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Gene Silencing , Genetic Therapy , Humans , Immunohistochemistry , Mice , Nanocapsules , Protein Binding , RNA, Messenger/genetics , RNA-Induced Silencing Complex , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/therapy , Tumor Burden/genetics , Xenograft Model Antitumor Assays
11.
Genome Biol ; 14(12): R149, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24380417

ABSTRACT

BACKGROUND: MiRNAs often operate in feedback loops with transcription factors and represent a key mechanism for fine-tuning gene expression. In transcription factor-induced reprogramming, miRNAs play a critical role; however, detailed analyses of miRNA expression changes during reprogramming at the level of deep sequencing have not been previously reported. RESULTS: We use four factor reprogramming to induce pluripotent stem cells from mouse fibroblasts and isolate FACS-sorted Thy1- and SSEA1+ intermediates and Oct4-GFP+ induced pluripotent stem cells (iPSCs). Small RNAs from these cells, and two partial-iPSC lines, another iPSC line, and mouse embryonic stem cells (mES cells) were deep sequenced. A comprehensive resetting of the miRNA profile occurs during reprogramming; however, analysis of miRNA co-expression patterns yields only a few patterns of change. Dlk1-Dio3 region miRNAs dominate the large pool of miRNAs experiencing small but significant fold changes early in reprogramming. Overexpression of Dlk1-Dio3 miRNAs early in reprogramming reduces reprogramming efficiency, suggesting the observed downregulation of these miRNAs may contribute to reprogramming. As reprogramming progresses, fewer miRNAs show changes in expression, but those changes are generally of greater magnitude. CONCLUSIONS: The broad resetting of the miRNA profile during reprogramming that we observe is due to small changes in gene expression in many miRNAs early in the process, and large changes in only a few miRNAs late in reprogramming. This corresponds with a previously observed transition from a stochastic to a more deterministic signal.


Subject(s)
Cellular Reprogramming , Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , Animals , Calcium-Binding Proteins , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , High-Throughput Nucleotide Sequencing/methods , Intercellular Signaling Peptides and Proteins/genetics , Iodide Peroxidase/genetics , Mice , Transcription Factors/metabolism
12.
Evolution ; 58(11): 2438-51, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15612287

ABSTRACT

Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.


Subject(s)
Bivalvia/genetics , Demography , Evolution, Molecular , Genetics, Population , Phylogeny , Selection, Genetic , Animals , Atlantic Ocean , Base Sequence , Cluster Analysis , DNA Primers , DNA, Mitochondrial/genetics , Female , Male , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...