ABSTRACT
DNA methylation has been studied abundantly in vertebrates and recent evidence confirms that this phenomenon could be disseminated among some invertebrates groups, including Drosophila species. In this paper, we used the Methylation-Sensitive Restriction Endonuclease (MSRE) technique and Southern blot with specific probes, to detect methylation in the Drosophila willistoni species. We found differential cleavage patterns between males and females that cannot be explained by Mendelian inheritance, pointing to a DNA methylation phenomenon different from the Drosophila melanogaster one. The sequencing of some of these bands showed that these fragments were formed by different DNA elements, among which rDNA. We also characterized the D. willitoni dDnmt2 sequence, through a Mega Blast search against the D. willistoni Trace Archive Database using the D. melanogaster dDnmt2 nucleotide sequence as query. The complete analysis of D. willistoni dDnmt2 sequence showed that its promoter region is larger, its dDnmt2 nucleotide sequence is 33% divergent from the D. melanogaster one, Inverted Terminal Repeats (ITRs) are absent and only the B isoform of the enzyme is produced. In contrast, ORF2 is more conserved. Comparing the D. willistoni and D. melanogaster dDnmt2 protein sequences, we found higher conservation in motifs from the large domain, responsible for the catalysis of methyl transfer, and great variability in the region that carries out the recognition of specific DNA sequences (TRD). Globally, our results reveal that methylation of the D. willistoni genome could be involved in a singular process of species-specific dosage compensation and that the DNA methylation in the Drosophila genus can have diverse functions. This could be related to the evolutionary history of each species and also to the acquisition time of the dDnmt2 gene.
Subject(s)
DNA Methylation , Drosophila Proteins/genetics , Drosophila/genetics , Genome , Amino Acid Sequence , Animals , Blotting, Southern , Chromosome Mapping , DNA/genetics , DNA-Cytosine Methylases/genetics , Drosophila/cytology , Female , Male , Molecular Sequence Data , Sequence Analysis, DNAABSTRACT
In an attempt to understand the dynamics of transposable elements (T'S) in the genome of host species, we investigated the distribution, representativeness and conservation of DNA sequences homologous to the Drosophila melanogaster gypsy retrotransposon in 42 drosophilid species. Our results extended the knowledge about the wide distribution of gypsy in the genus Drosophila, including several Neotropical species not previously studied. The gypsy-like sequences showed high divergence compared to the D. melanogaster gypsy element. Furthermore, the conservation of the restriction sites between gypsy sequences from phylogenetically unrelated species pointed to a more complex evolutionary picture, which includes the possibility of the horizontal transfer events already described for this retrotransposon.
ABSTRACT
The presence and integrity of the P transposon and the gypsy retrotransposon in the genome of 18 samples of natural Drosophila willistoni populations collected from a large area of South America were Southern blot screened using Drosophila melanogaster probes. The aim of this screening was provide further knowledge-base on the geographical distribution of D. willistoni and to carry out an inter-population analysis of the P and gypsy elements present in the genomes of the populations analyzed. The fragment patterns obtained indicate that both the P and gypsy elements are ancient in the D. willistoni genome, but whereas the gypsy retroelement appears to be invariable and stable the P element varies between populations and appears to still have some capacity for mobilization.
Subject(s)
Animals , DNA , DNA Transposable Elements , Drosophila/geneticsABSTRACT
In an endeavor to contribute to the comprehension of the evolution of transposable elements (TEs) in the genome of host species, we investigated the phylogenetic relationships of sequences homologous to the retrotransposon gypsy of Drosophila melanogaster in 19 species of Drosophila, in Scaptodrosophila latifasciaeformis, and in Zaprionus indianus. This phylogenetic study was based on approximately 500 base pairs of the env gene. Our analyses showed considerable discrepancy between the phylogeny of gypsy elements and the relationship of their host species, and they allow us to infer a complex evolutionary pattern that could include ancestral polymorphism, vertical transmission, and several cases of horizontal transmission.
Subject(s)
Drosophilidae/genetics , Evolution, Molecular , Retroelements , Animals , Gene Transfer, Horizontal , PhylogenyABSTRACT
Understanding the architecture of physiological functions from annotated genome sequences is a major task for postgenomic biology. From the annotated genome sequence of the microbe Escherichia coli, we propose a general quantitative definition of enzyme importance in a metabolic network. Using a graph analysis of its metabolism, we relate the extent of the topological damage generated in the metabolic network by the deletion of an enzyme to the experimentally determined viability of the organism in the absence of that enzyme. We show that the network is robust and that the extent of the damage relates to enzyme importance. We predict that a large fraction (91%) of enzymes causes little damage when removed, while a small group (9%) can cause serious damage. Experimental results confirm that this group contains the majority of essential enzymes. The results may reveal a universal property of metabolic networks.