Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675052

ABSTRACT

Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and implanted in a rat complete spinal cord transection injury model to evaluate whether the resulting composite implants provided structural and functional recovery, using magnetic resonance (MR) imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar scaffolds as a promising treatment for spinal cord injury recovery.

2.
J Neurochem ; 166(1): 87-106, 2023 07.
Article in English | MEDLINE | ID: mdl-37328918

ABSTRACT

Ischemic stroke is a leading cause of disability worldwide. There is no simple treatment to alleviate ischemic brain injury, as thrombolytic therapy is applicable within a narrow time window. During the last years, the ketogenic diet (KD) and the exogenous administration of the ketone body ß-hydroxybutyrate (BHB) have been proposed as therapeutic tools for acute neurological disorders and both can reduce ischemic brain injury. However, the mechanisms involved are not completely clear. We have previously shown that the D enantiomer of BHB stimulates the autophagic flux in cultured neurons exposed to glucose deprivation (GD) and in the brain of hypoglycemic rats. Here, we have investigated the effect of the systemic administration of D-BHB, followed by its continuous infusion after middle cerebral artery occlusion (MCAO), on the autophagy-lysosomal pathway and the activation of the unfolded protein response (UPR). Results show for the first time that the protective effect of BHB against MCAO injury is enantiomer selective as only D-BHB, the physiologic enantiomer of BHB, significantly reduced brain injury. D-BHB treatment prevented the cleavage of the lysosomal membrane protein LAMP2 and stimulated the autophagic flux in the ischemic core and the penumbra. In addition, D-BHB notably reduced the activation of the PERK/eIF2α/ATF4 pathway of the UPR and inhibited IRE1α phosphorylation. L-BHB showed no significant effect relative to ischemic animals. In cortical cultures under GD, D-BHB prevented LAMP2 cleavage and decreased lysosomal number. It also abated the activation of the PERK/eIF2α/ATF4 pathway, partially sustained protein synthesis, and reduced pIRE1α. In contrast, L-BHB showed no significant effects. Results suggest that protection elicited by D-BHB treatment post-ischemia prevents lysosomal rupture allowing functional autophagy, preventing the loss of proteostasis and UPR activation.


Subject(s)
Brain Injuries , Stroke , Rats , Animals , Ketone Bodies/pharmacology , Ketone Bodies/metabolism , Endoribonucleases/pharmacology , Protein Serine-Threonine Kinases , Endoplasmic Reticulum Stress , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Glucose/metabolism , Autophagy , Infarction, Middle Cerebral Artery , Models, Theoretical , Stroke/drug therapy
3.
Mol Ther ; 30(2): 798-815, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34563674

ABSTRACT

Spontaneous recovery after a stroke accounts for a significant part of the neurological recovery in patients. However limited, the spontaneous recovery is mechanistically driven by axonal restorative processes for which several molecular cues have been previously described. We report the acceleration of spontaneous recovery in a preclinical model of ischemia/reperfusion in rats via a single intracerebroventricular administration of extracellular vesicles released from primary cortical astrocytes. We used magnetic resonance imaging and confocal and multiphoton microscopy to correlate the structural remodeling of the corpus callosum and striatocortical circuits with neurological performance during 21 days. We also evaluated the functionality of the corpus callosum by repetitive recordings of compound action potentials to show that the recovery facilitated by astrocytic extracellular vesicles was both anatomical and functional. Our data provide compelling evidence that astrocytes can hasten the basal recovery that naturally occurs post-stroke through the release of cellular mediators contained in extracellular vesicles.


Subject(s)
Extracellular Vesicles , Stroke , Animals , Astrocytes , Axons , Disease Models, Animal , Humans , Magnetic Resonance Imaging , Rats , Recovery of Function/physiology , Stroke/pathology
4.
Front Cell Neurosci ; 13: 270, 2019.
Article in English | MEDLINE | ID: mdl-31312121

ABSTRACT

Vascular endothelial growth factor (VEGF) has long been connected to the development of tissue lesion following ischemic stroke. Contradictory findings either situate VEGF as a promoter of large infarct volumes or as a potential attenuator of damage due to its well documented neuroprotective capability. The core of this discrepancy mostly lies on the substantial number of pleiotropic functions driven by VEGF. Mechanistically, these effects are activated through several VEGF receptors for which various closely related ligands exist. Here, we tested in an experimental model of stroke how the differential activation of VEGF receptors 1 and 2 would modify functional and histological outcomes in the acute phase post-ischemia. We also assessed whether VEGF-mediated responses would involve the modulation of inflammatory mechanisms and how this trophic factor acted specifically on neuronal receptors. We produced ischemic infarcts in adult rats by transiently occluding the middle cerebral artery and induced the pharmacological inhibition of VEGF receptors by i.c.v. administration of the specific VEGFR2 inhibitor SU1498 and the pan-VEGFR blocker Axitinib. We evaluated the neurological performance of animals at 24 h following stroke and the occurrence of brain infarctions analyzed at the gross metabolic and neuronal viability levels. We also assessed the induction of peripheral pro- and anti-inflammatory cytokines in the cerebrospinal fluid and blood and assessed the polarization of activated microglia. Finally, we studied the direct involvement of cortical neuronal receptors for VEGF with in vitro assays of excitotoxic damage. Preferential VEGFR1 activation by the endogenous ligand promotes neuronal protection and prevents the presentation of large volume infarcts that highly correlate with neurological performance, while the concomitant activation of VEGFR2 reduces this effect, even in the presence of exogenous ligand. This process partially involves the polarization of microglia to the state M2. At the cellular level, neurons also responded better to the preferential activation of VEGFR1 when challenged to N-methyl-D-aspartate-induced excitotoxicity. Endogenous activation of VEGFR2 hinders the neuroprotective mechanisms mediated by the activation of VEGFR1. The selective modulation of these concurrent processes might enable the development of therapeutic approaches that target specific VEGFR1-mediated signaling during the acute phase post-stroke.

5.
Brain Res ; 1646: 384-392, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27321157

ABSTRACT

Stroke is a frequent cause of death and the first of disability in the world population. We have shown that dapsone acts as an antioxidant, antiinflammatory and antiapoptotic agent after brain Ischemia reperfusion (I/R) in rats; however, its therapeutic efficacy, measured by imaging has not been characterized. In this context, the aim of this study was to evaluate the neuroprotective effect of dapsone by magnetic resonance imaging (MRI) and to correlate imaging markers with motor function and oxidative stress after transient cerebral ischemia and reperfusion (I/R). We used male rats throughout the experiment. Functional deficit after I/R was assessed by using Longa scale. The area of brain tissue damage was measured by histology. The nuclear factor erythroid 2-related factor 2 (Nrf-2) and the amount of reactive oxygen species (ROS) were measured as biomarkers of oxidative stress. Finally, difussion tensor MRI was employed to measure the fractional anisotropy (FA), as a MRI marker of the pathophysiologic brain status. Results showed a better functional recovery and less damaged tissue in animals treated with dapsone vs control group. The values of FA were higher in animals receiving treatment, indicating a better preservation of brain structure. At early stages of the damage, dapsone was able to reduce both oxidative markers (Nrf-2 and ROS). Our findings provide new evidence for the efficacy of dapsone when administered during the acute phase after I/R and that quantitative sequences of MRI are useful for characterizing its potential therapeutic benefits after stroke.


Subject(s)
Brain Ischemia/diagnostic imaging , Brain Ischemia/drug therapy , Dapsone/administration & dosage , Neuroprotective Agents/administration & dosage , Reperfusion Injury/diagnostic imaging , Reperfusion Injury/drug therapy , Stroke/complications , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Ischemia/complications , Brain Ischemia/pathology , Magnetic Resonance Imaging , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Recovery of Function/drug effects , Reperfusion Injury/complications , Reperfusion Injury/pathology
6.
Eur J Pharmacol ; 774: 127-34, 2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26851372

ABSTRACT

Hepatic encephalopathy is a common complication in cases of liver damage; it results from several factors, including the accumulation of toxic substances in the brain, e.g. manganese, ammonia and glutamine. We have previously reported that manganese favors ammonia and glutamine accumulation in the brain of cirrhotic rats, and we suggested that such effect could be mediated by manganese-elicited activation of the NKCC1 (Na(+)/K(+)/2Cl(-) cotransporter 1). To test this hypothesis, we used bumetanide, an NKCC1 blocker prescribed to treat ascites in cirrhotic patients; we expected that if NKCC1 was responsible for manganese-mediated ammonia buildup and the subsequent glutamine accumulation, bumetanide could counteract such effect and improve motor coordination. In addition, we considered essential to test the effect of bumetanide on manganese brain levels. We used a model of liver damage in rats, consisting in bile-duct ligation. Animals were exposed to manganese in the drinking water (1 mg/ml) for two weeks and ammonia in the food (20% w/w of ammonia acetate) during the second week after surgery. Bumetanide was administered intraperitoneally in the course of the ammonia treatment. We measured glutamine and manganese in three brain regions: frontal cortex, striatum and cerebellum. Bumetanide produced no effect on glutamine accumulation; however, because of bumetanide treatment, manganese was increased in the brain, and also the activity of gamma-glutamyl transferase in plasma; thus, we consider that the influence of bumetanide and similar diuretics on liver function and manganese homeostasis should be further studied.


Subject(s)
Brain/drug effects , Brain/metabolism , Bumetanide/pharmacology , Liver Cirrhosis/metabolism , Ammonia/metabolism , Animals , Glutamine/metabolism , Liver Cirrhosis/physiopathology , Male , Motor Activity/drug effects , Motor Activity/physiology , Rats , Rats, Wistar
7.
Neurosci Res ; 75(3): 250-5, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23298529

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by decreased dopamine, intracellular inclusions (Lewy bodies) and brain iron deposits. PD has also been related with reduced ferroxidase activity, diminished antioxidant defenses and lipid peroxidation. Striatal injection of 1-methyl-4-phenylpyridinium (MPP(+)) into rodents reproduces the major biochemical characteristics of PD, including oxidative stress. Copper (Cu) plays an important role as prosthetic group of several proteins involved in iron metabolism and antioxidant responses, such as ceruloplasmin (Cp). In the present study, intraperitoneal CuSO4 injection (10µmol/kg) produced an insignificant increase of Cu content in striatum and midbrain (17.5% and 7%, respectively). After 10 and 11h, Cu induced 6- and 4-fold increase Cp mRNA in midbrain and striatum, respectively. Cu-supplement also produced a time-dependent increase ferroxidase activity in striatal tissue, reaching a maximum 16h after Cu treatment in midbrain; while, ferrous iron content diminished 18% in striatum and 8% in midbrain. In regard the PD model, we found that MPP(+) (10µg/8µL, intrastriatal), induced a significant (P<0.05) reduction of striatal ferroxidase activity; this effect was reverted by Cu pre-treatment 16h before MPP(+). Likewise, Cu-supplement prevented lipid fluorescent products formation in striatum, evaluated (P<0.01) 6h after MPP(+). In the long term, apomorphine-evoked circling behavior was evaluated 6 days after MPP(+) injury; Cu pre-treatment significantly reduced (P<0.05) the apomorphine-induced ipsilateral turns in MPP(+)-lesioned rats. These results suggest that Cu-induced expression of Cp could be an interesting scope against the deleterious effects of iron deposits in PD.


Subject(s)
1-Methyl-4-phenylpyridinium/metabolism , Ceruloplasmin/metabolism , Copper/pharmacology , Corpus Striatum/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Copper/pharmacokinetics , Copper Sulfate/administration & dosage , Copper Sulfate/pharmacology , Corpus Striatum/drug effects , Disease Models, Animal , Male , Mesencephalon/drug effects , Mesencephalon/metabolism , Parkinson Disease/diet therapy , Parkinson Disease/prevention & control , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...