Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Parasitol Parasites Wildl ; 23: 100902, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38292245

ABSTRACT

Blastocystis is a genus of intestinal stramenopiles that infect vertebrates, and may cause disease of the alimentary tract. Currently, at least 40 genotypes ("subtypes") of Blastocystis are recognised worldwide based on sequence data for the small subunit of the nuclear ribosomal RNA (SSU-rRNA) gene. Despite the numerous studies of Blastocystis worldwide, very few studies have explored Blastocystis in wild animals, particularly in Australia. Here, we used a PCR-based next generation sequencing (NGS)-phylogenetic approach to genetically characterise and classify Blastocystis variants from selected wildlife in the Australian state of Victoria. In total, 1658 faecal samples were collected from nine host species, including eastern grey kangaroo, swamp wallaby, common wombat, deer, European rabbit, canines and emu. Genomic DNA was extracted from these samples, a 500 bp region of the SSU-rRNA gene amplified by polymerase chain reaction (PCR) and, then, a subset of samples sequenced using Illumina technology. Primary PCR detected Blastocystis in 482 of the 1658 samples (29%), with the highest percentage in fallow deer (63%). Subsequent, Illumina-based sequencing of a subset of 356 samples revealed 55 distinct amplicon sequence variants (ASVs) representing seven currently-recognised subtypes (STs) [ST13 (prominent in marsupials), ST10, ST14, ST21, ST23, ST24 and ST25 (prominent in deer)] and two novel STs (ST45 and ST46) in marsupials. Mixed infections of different STs were observed in macropods, deer, emu and canids (fox, feral dog or dingo), but no infection was detected in rabbits or wombats. This study reveals marked genetic diversity within Blastocystis in a small number of species of wild animals in Australia, suggesting complexity in the genetic composition and transmission patterns of members of the genus Blastocystis in this country.

2.
Lancet Reg Health West Pac ; 41: 100920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37860203

ABSTRACT

Background: Soil-transmitted helminth (STH) infection control programs typically consist of school-based preventive chemotherapy (PC) targeted to school-aged children. STH reservoirs in untreated community members contribute to ongoing transmission in children. The CoDe-STH (Community Deworming against STH) trial, conducted in Dak Lak province, Vietnam, between October 2019 and November 2020, aimed to determine whether community-wide mass drug administration (MDA) is more effective than school-based targeted PC in reducing STH prevalence and intensity in children. Methods: In this two-arm cluster randomised controlled trial, 64 primary schools were randomly assigned 1:1 to receive either school-based targeted PC ("school arm") or community-wide MDA ("community arm"). A single dose of albendazole 400 mg was used for deworming. The primary outcome was hookworm prevalence in schoolchildren, measured using quantitative real-time PCR. We also measured infection intensity for Necator americanus only, using qPCR cycle threshold (Ct) values converted into eggs per gram of faeces (EPG). Analysis was by intention to treat. The trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12619000309189). Findings: The analysis included 4955 children in the school arm and 5093 children in the community arm. N. americanus was the dominant STH species. The relative reduction in hookworm prevalence was not significantly different between the school arm (30.1%, 95% confidence interval [CI] 20.5-36.9) and the community arm (34.6%, 95% CI 19.9-49.4). Due to lower baseline prevalence than expected, the study was underpowered to detect a difference in prevalence reduction between the study arms. The community arm showed significantly greater relative reduction in N. americanus infection intensity (56.0%, 95% CI 39.9-72.1) compared to the school arm (3.4%, 95% CI -24.7 to 31.4). The community arm also showed greater relative reduction in prevalence of moderate-to-heavy intensity (≥2000 EPG) N. americanus infections (81.1%; 95% CI 69.7-92.6) compared to the school arm (39.0%, 95% CI 13.7-64.2). Interpretation: Although no impact was seen on overall prevalence, community-wide MDA was more effective in lowering N. americanus infection intensity in schoolchildren compared to school-based targeted PC, measured 12 months after one round of albendazole deworming with high coverage. Funding: National Health and Medical Research Council, Australia (APP1139561).

3.
PLoS Negl Trop Dis ; 16(10): e0010767, 2022 10.
Article in English | MEDLINE | ID: mdl-36315591

ABSTRACT

Preventive chemotherapy (PC), consisting of the regular distribution of anthelmintics to populations or groups of populations at risk, is the primary tool used to control soil-transmitted helminth (STH) infections. This strategy, whilst cost-effective, raises the concern of potential emergence of drug resistance. The efficacy of anthelmintics against STH infections is measured using cure rate (CR) and egg reduction rate (ERR), using microscopy-based techniques such as the Kato-Katz thick smear. However, Kato-Katz has low sensitivity, especially for low-intensity infections, and requires fresh samples that need to be processed quickly. Realtime quantitative PCR (qPCR), which is more sensitive, is emerging as a "gold standard" for STH diagnostics given its higher sensitivity (important in low prevalence settings) and ability to differentiate hookworm species, while sodium nitrate flotation (SNF) may provide a low-cost more sensitive and practical alternative to Kato-Katz in the field. In this study, we examined the efficacy of a locally manufactured brand of albendazole 400 mg ("Alzental") against hookworm in Dak Lak province, Vietnam, using both qPCR and SNF. For qPCR, formulae to convert qPCR cycle threshold (Ct) values into eggs per gram of faeces (EPG) were utilised to determine efficacy calculations, and these values directly compared with efficacy values generated using SNF. Factors associated with CR and ERR were examined, and Alzental tablet quality was assessed by comparing with an Australian TGA-approved equivalent "Eskazole" tablet. We observed a CR and ERR of 64.9% and 87.5% respectively using qPCR, and 68.4% and 67.6% respectively using SNF. The tablet composition of Alzental was comparable to Eskazole in terms of active albendazole drug concentration with no evidence of impurities. This study demonstrates that the efficacy of Alzental against hookworm is within the range of previously reported studies for albendazole 400 mg. The study also demonstrates the value of qPCR and SNF as alternatives to standard Kato-Katz methodology for assessment of anthelmintic efficacy.


Subject(s)
Anthelmintics , Helminthiasis , Hookworm Infections , Animals , Ancylostomatoidea/genetics , Albendazole/pharmacology , Albendazole/therapeutic use , Vietnam , Australia , Hookworm Infections/drug therapy , Hookworm Infections/epidemiology , Helminthiasis/epidemiology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Real-Time Polymerase Chain Reaction , Feces , Soil
4.
Biotechnol Adv ; 57: 107937, 2022.
Article in English | MEDLINE | ID: mdl-35271946

ABSTRACT

Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.


Subject(s)
Anthelmintics , Anti-Infective Agents , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Drug Discovery , Drug Resistance , High-Throughput Screening Assays/methods
5.
Adv Parasitol ; 111: 203-251, 2021.
Article in English | MEDLINE | ID: mdl-33482975

ABSTRACT

Widespread resistance to currently-used anthelmintics represents a major obstacle to controlling parasitic nematodes of livestock animals. Given the reliance on anthelmintics in many control regimens, there is a need for the continued discovery and development of new nematocides. Enabling such a focus are: (i) the major chemical diversity of natural products; (ii) the availability of curated, drug-like extract-, fraction- and/or compound-libraries from natural sources; (iii) the utility and practicality of well-established whole-worm bioassays for Haemonchus contortus-an important parasitic nematodes of livestock-to screen natural product libraries; and (iv) the availability of advanced chromatographic (HPLC), spectroscopic (NMR) and spectrometric (MS) techniques for bioassay-guided fractionation and structural elucidation. This context provides a sound basis for the identification and characterisation of anthelmintic candidates from natural sources. This chapter provides a background on the importance and impact of helminth infections/diseases, parasite control and aspects of drug discovery, and reviews recent work focused on (i) screening well-defined compound libraries to establish the methods needed for large-scale screening of natural extract libraries; (ii) discovering plant and marine extracts with nematocidal or nematostatic activity, and purifying bioactive compounds and assessing their potential for further development; and (iii) synthesising analogues of selected purified natural compounds for the identification of possible 'lead' candidates. The chapter describes some lessons learned from this work and proposes future areas of focus for drug discovery. Collectively, the findings from this recent work show potential for selected natural product scaffolds as candidates for future development. Developing such candidates via future chemical optimisation, efficacy and safety evaluations, broad spectrum activity assessments, and target identification represents an exciting prospect and, if successful, could pave the way to subsequent pre-clinical and clinical evaluations.


Subject(s)
Anthelmintics/pharmacology , Biological Products/pharmacology , Drug Resistance/drug effects , Helminthiasis, Animal/drug therapy , Animals , Drug Discovery , Livestock
6.
Molecules ; 25(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344703

ABSTRACT

Kava extract, an aqueous rhizome emulsion of the plant Piper methysticum, has been used for centuries by Pacific Islanders as a ceremonial beverage, and has been sold as an anxiolytic agent for some decades. Kavalactones are a major constituent of kava extract. In a previous investigation, we had identified three kavalactones that inhibit larval development of Haemonchus contortus in an in vitro-bioassay. In the present study, we synthesized two kavalactones, desmethoxyyangonin and yangonin, as well as 17 analogues thereof, and evaluated their anthelmintic activities using the same bioassay as employed previously. Structure activity relationship (SAR) studies showed that a 4-substituent on the pendant aryl ring was required for activity. In particular, compounds with 4-trifluoromethoxy, 4-difluoromethoxy, 4-phenoxy, and 4-N-morpholine substitutions had anthelmintic activities (IC50 values in the range of 1.9 to 8.9 µM) that were greater than either of the parent natural products-desmethoxyyangonin (IC50 of 37.1 µM) and yangonin (IC50 of 15.0 µM). The synthesized analogues did not exhibit toxicity on HepG2 human hepatoma cells in vitro at concentrations of up to 40 µM. These findings confirm the previously-identified kavalactone scaffold as a promising chemotype for new anthelmintics and provide a basis for a detailed SAR investigation focused on developing a novel anthelmintic agent.


Subject(s)
Anthelmintics/chemical synthesis , Anthelmintics/pharmacology , Haemonchus/drug effects , Kava/chemistry , Animals , Dose-Response Relationship, Drug , Larva/drug effects , Molecular Structure , Parasitic Sensitivity Tests
7.
Sci Rep ; 9(1): 16165, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700060

ABSTRACT

Protein-based drug discovery strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors. Currently, there are no known trehalose-6-phosphate phosphatase (TPP) inhibitors that possess reasonable inhibition constants and chemical scaffolds amenable to convenient modification. In the present study, we subjected recombinant TPPs to a two-tiered screening approach to evaluate several diverse compound groups with respect to their potential as TPP inhibitors. From a total of 5452 compounds tested, N-(phenylthio)phthalimide was identified as an inhibitor of nematode TPPs with apparent Ki values of 1.0 µM and 0.56 µM against the enzymes from the zoonotic roundworms Ancylostoma ceylanicum and Toxocara canis, respectively. Using site-directed mutagenesis, we demonstrate that this compound acts as a suicide inhibitor that conjugates a strictly conserved cysteine residue in the vicinity of the active site of nematode TPPs. The anthelmintic properties of N-(phenylthio)phthalimide were assessed in whole nematode assays using larvae of the ascaroids T. canis and T. cati, as well as the barber's pole worm Haemonchus contortus. The compound was particularly effective against each of the ascaroids with an IC50 value of 9.3 µM in the survival assay of T. cati larvae, whereas no bioactivity was observed against H. contortus.


Subject(s)
Anthelmintics/pharmacology , Enzyme Inhibitors/pharmacology , Helminth Proteins/antagonists & inhibitors , Nematoda/enzymology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phthalimides/pharmacology , Animals , Helminth Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism
8.
Mar Drugs ; 17(11)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652835

ABSTRACT

There is an urgent need to discover and develop new anthelmintics for the treatment of parasitic nematodes of veterinary importance to circumvent challenges linked to drug resistant parasites. Being one of the most diverse natural ecosystems, the marine environment represents a rich resource of novel chemical entities. This study investigated 2000 extracts from marine invertebrates, collected from Australian waters, for anthelmintic activity. Using a well-established in vitro bioassay, these extracts were screened for nematocidal activity against Haemonchus contortus-a socioeconomically important parasitic nematode of livestock animals. Extracts (designated Mu-1, Ha-1 and Ha-2) from two marine sponges (Monanchora unguiculata and Haliclona sp.) each significantly affected larvae of H. contortus. Individual extracts displayed a dose-dependent inhibition of both the motility of exsheathed third-stage larvae (xL3s) and the development of xL3s to fourth-stage larvae (L4s). Active fractions in each of the three extracts were identified using bioassay-guided fractionation. From the active fractions from Monanchora unguiculata, a known pentacyclic guanidine alkaloid, fromiamycalin (1), was purified. This alkaloid was shown to be a moderately potent inhibitor of L4 development (half-maximum inhibitory concentration (IC50) = 26.6 ± 0.74 µM) and L4 motility (IC50 = 39.4 ± 4.83 µM), although it had a relatively low potency at inhibiting of xL3 motility (IC50 ≥ 100 µM). Investigation of the active fractions from the two Haliclona collections led to identification of a mixture of amino alcohol lipids, and, subsequently, a known natural product halaminol A (5). Anthelmintic profiling showed that 5 had limited potency at inhibiting larval development and motility. These data indicate that fromiamycalin, other related pentacyclic guanidine alkaloids and/or halaminols could have potential as anthelmintics following future medicinal chemistry efforts.


Subject(s)
Alkaloids/pharmacology , Anthelmintics/pharmacology , Haemonchus/drug effects , Alkaloids/chemistry , Animals , Anthelmintics/chemistry , Australia , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Larva/drug effects , Larva/growth & development , Porifera/chemistry , Rats
9.
BMC Bioinformatics ; 20(1): 262, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31113359

ABSTRACT

BACKGROUND: Analyses of replicates in sets of discrete data, typically acquired in multi-well plate formats, is a recurring task in many contemporary areas in the Life Sciences. The availability of accessible cross-platform data analysis tools for such fundamental tasks in varied projects and environments is an important prerequisite to ensuring a reliable and timely turnaround as well as to provide practical analytical tools for student training. RESULTS: We have developed an easy-to-use, interactive software tool for the analysis of multiple data sets comprising replicates of discrete bivariate data points. For each dataset, the software identifies the replicate data points from a defined matrix layout and calculates their means and standard errors. The averaged values are then automatically fitted using either a linear or a logistic dose response function. CONCLUSIONS: DRfit is a practical and convenient tool for the analysis of one or multiple sets of discrete data points acquired as replicates from multi-well plate assays. The design of the graphical user interface and the built-in analysis features make it a flexible and useful tool for a wide range of different assays.


Subject(s)
Software , Biological Science Disciplines , Data Interpretation, Statistical , User-Computer Interface
10.
Parasit Vectors ; 12(1): 191, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31039802

ABSTRACT

BACKGROUND: Due to anthelmintic resistance problems, there is a need to discover and develop new drugs for the treatment and control of economically important and pathogenic nematodes of livestock animals. With this focus in mind, we screened 236 compounds from a library (called the 'Kurz-box') representing chemically diverse classes such as heterocyclic compounds (e.g. thiazoles, pyrroles, quinolines, pyrimidines, benzo[1,4]diazepines), hydoxamic acid-based metalloenzyme inhibitors, peptidomimetics (bis- and tris-pyrimidoneamides, alkoxyamides) and various intermediates on Haemonchus contortus, one of the most important parasitic nematodes of ruminants. METHODS: In the present study, we tested these compounds, and measured the inhibition of larval motility and development of exsheathed third-stage (xL3) and fourth-stage (L4) larvae of H. contortus using an optimised, whole-organism phenotypic screening assay. RESULTS: Of the 236 compounds, we identified two active compounds (called BLK127 and HBK4) that induced marked phenotypic changes in the worm in vitro. Compound BLK127 induced an 'eviscerated' phenotype in the xL3 stage and also inhibited L4 development. Compound HBK4 exerted a 'curved' phenotype in both xL3s and L4s. CONCLUSIONS: The findings from this study provide a basis for future work on the chemical optimisation of these compounds, on assessing the activity of optimised compounds on adult stages of H. contortus both in vitro and in vivo (in the host animal) and against other parasitic worms of veterinary and medical importance.


Subject(s)
Anthelmintics/pharmacology , Haemonchus/growth & development , Animals , Anthelmintics/chemistry , Drug Evaluation, Preclinical , Female , Haemonchus/drug effects , Inhibitory Concentration 50 , Larva/drug effects , Larva/growth & development , Male , Phenotype
11.
Article in English | MEDLINE | ID: mdl-30739078

ABSTRACT

Due to the widespread occurrence and spread of anthelmintic resistance, there is a need to develop new drugs against resistant parasitic nematodes of livestock animals. The Nobel Prize-winning discovery and development of the anti-parasitic drugs avermectin and artemisinin has renewed the interest in exploring natural products as anthelmintics. In the present study, we screened 7500 plant extracts for in vitro-activity against the barber's pole worm, Haemonchus contortus, a highly significant pathogen of ruminants. The anthelmintic extracts from two plants, Cryptocarya novoguineensis and Piper methysticum, were fractionated by high-performance liquid chromatography (HPLC). Subsequently, compounds were purified from fractions with significant biological activity. Four α-pyrones, namely goniothalamin (GNT), dihydrokavain (DHK), desmethoxyyangonin (DMY) and yangonin (YGN), were purified from fractions from the two plants, GNT from C. novoguineensis, and DHK, DMY and YGN (= kavalactones) from P. methysticum. The three kavalactones induced a lethal, eviscerated (Evi) phenotype in treated exsheathed third-stage larvae (xL3s), and DMY and YGN had moderate potencies (IC50 values of 31.7 ±â€¯0.23 µM and 23.7 ±â€¯2.05 µM, respectively) at inhibiting the development of xL3s to fourth-stage larvae (L4s). Although GNT had limited potency (IC50 of 200-300 µM) at inhibiting L4 development, it was the only compound that reduced L4 motility (IC50 of 6.25-12.50 µM). The compounds purified from each plant affected H. contortus in an irreversible manner. These findings suggest that structure-activity relationship studies of α-pyrones should be pursued to assess their potential as anthelmintics.


Subject(s)
Anthelmintics/pharmacology , Cryptocarya/chemistry , Haemonchus/drug effects , Piperaceae/chemistry , Plant Extracts/pharmacology , Pyrones/pharmacology , Animals , Chromatography, High Pressure Liquid , High-Throughput Screening Assays , Inhibitory Concentration 50 , Larva/drug effects , Parasitic Sensitivity Tests , Phytochemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL