Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 12687, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542090

ABSTRACT

Individuals with Autism Spectrum Disorder (ASD; autism) commonly present with gastrointestinal (GI) illness in addition to core diagnostic behavioural traits. The appendix, or cecum in mice, is important for GI homeostasis via its function as a key site for fermentation and a microbial reservoir. Even so, the role of the appendix and cecum in autism-associated GI symptoms remains uninvestigated. Here, we studied mice with an autism-associated missense mutation in the post-synaptic protein neuroligin-3 (Nlgn3R451C), which impacts brain and enteric neuronal activity. We assessed for changes in cecal motility using a tri-cannulation video-imaging approach in ex vivo preparations from wild-type and Nlgn3R451C mice. We investigated cecal permeability and neurally-evoked secretion in wild-type and Nlgn3R451C tissues using an Ussing chamber set-up. The number of cecal patches in fresh tissue samples were assessed and key immune populations including gut macrophages and dendritic cells were visualised using immunofluorescence. Nlgn3R451C mice displayed accelerated cecal motor complexes and reduced cecal weight in comparison to wildtype littermates. Nlgn3R451C mice also demonstrated reduced neurally-evoked cecal secretion in response to the nicotinic acetylcholine receptor agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP), but permeability was unchanged. We observed an increase in the number of cecal patches in Nlgn3R451C mice, however the cellular morphologies of key immune populations studied were not significantly altered. We show that the R451C nervous system mutation leads to cecal dysmotility, impaired secretion, and neuro-immune alterations. Together, these results suggest that the R451C mutation disrupts the gut-brain axis with GI dysfunction in autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Mice , Autistic Disorder/genetics , Autistic Disorder/metabolism , Cecum/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Lymphoid Tissue/metabolism , Neurons/metabolism
2.
Biomolecules ; 13(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37509099

ABSTRACT

Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 ß -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.


Subject(s)
Autism Spectrum Disorder , Enteric Nervous System , Mice , Animals , Calbindin 2/genetics , Calbindin 2/metabolism , Autism Spectrum Disorder/metabolism , Neurons/metabolism , Neuroglia , Synapses , Cholinergic Agents/metabolism
3.
Clin Sci (Lond) ; 134(22): 2943-2957, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33125061

ABSTRACT

Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The underlying mechanisms and precise effects of CS on gut contractility, however, are not fully characterised. Therefore, the aim of the present study was to investigate whether CS impacts GI function and structure in a mouse model of CS-induced COPD. We also aimed to investigate GI function in the presence of ebselen, an antioxidant that has shown beneficial effects on lung inflammation resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI structure was analysed by histology and immunofluorescence. After 2 months of CS exposure, ex vivo gut motility was analysed using video-imaging techniques to examine changes in colonic migrating motor complexes (CMMCs). CS decreased colon length in mice. Mice exposed to CS for 2 months had a higher frequency of CMMCs and a reduced resting colonic diameter but no change in enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC frequency changes but not the reduced colonic diameter phenotype. Ebselen treatment reversed the CS-induced reduction in colonic diameter. After 6 months CS, the number of myenteric nitric-oxide producing neurons was significantly reduced. This is the first evidence of colonic dysmotility in a mouse model of CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron numbers; however, prolonged CS-exposure significantly reduced enteric neuron numbers in mice. Further research is needed to assess potential therapeutic applications of ebselen in GI dysfunction in COPD.


Subject(s)
Azoles/pharmacology , Cigarette Smoking/adverse effects , Gastrointestinal Tract/physiopathology , Organoselenium Compounds/pharmacology , Animals , Cell Count , Cell Shape/drug effects , Colon/drug effects , Colon/pathology , Colon/physiopathology , Enteric Nervous System/drug effects , Gastrointestinal Motility/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Isoindoles , Macrophages/drug effects , Male , Mice, Inbred BALB C , Mucus/drug effects , Mucus/metabolism , Myenteric Plexus/drug effects , Neurons/drug effects , Neurons/metabolism
4.
Article in English | MEDLINE | ID: mdl-32547962

ABSTRACT

Mucus is integral to gut health and its properties may be affected in neurological disease. Mucus comprises a hydrated network of polymers including glycosylated mucin proteins. We propose that factors that influence the nervous system may also affect the volume, viscosity, porosity of mucus composition and subsequently, gastrointestinal (GI) microbial populations. The gut has its own intrinsic neuronal network, the enteric nervous system, which extends the length of the GI tract and innervates the mucosal epithelium. The ENS regulates gut function including mucus secretion and renewal. Both dysbiosis and gut dysfunction are commonly reported in several neurological disorders such as Parkinson's and Alzheimer's disease as well in patients with neurodevelopmental disorders including autism. Since some microbes use mucus as a prominent energy source, changes in mucus properties could alter, and even exacerbate, dysbiosis-related gut symptoms in neurological disorders. This review summarizes existing knowledge of the structure and function of the mucus of the GI tract and highlights areas to be addressed in future research to better understand how intestinal homeostasis is impacted in neurological disorders.


Subject(s)
Mucus , Nervous System Diseases , Dysbiosis , Gastrointestinal Tract , Homeostasis , Humans , Intestinal Mucosa
SELECTION OF CITATIONS
SEARCH DETAIL
...