Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Invest Ophthalmol Vis Sci ; 63(12): 30, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36445700

ABSTRACT

Purpose: Factor H (FH, encoded by CFH) prevents activation of the complement system's alternative pathway (AP) on host tissues. FH impedes C3 convertase (C3bBb) formation, accelerates C3bBb decay, and is a cofactor for factor I (FI)-catalyzed C3b cleavage. Numerous CFH variants are associated with age-related macular degeneration (AMD), but their functional consequences frequently remain undetermined. Here, we conduct functional comparisons between a control version of FH (not AMD linked) and 21 AMD-linked FH variants. Methods: Recombinantly produced, untagged, full-length FH versions were assayed for binding to C3b and decay acceleration of C3bBb using surface-plasmon resonance, FI-cofactor activity using a fluorescent probe of C3b integrity, suppression of C5b-9 assembly on an AP-activating surface, and inhibition of human AP-mediated lysis of sheep erythrocytes. Results: All versions were successfully purified despite below-average yields for Arg2Thr, Arg53Cys, Arg175Pro, Arg175Gln, Ile221Val, Tyr402His, Pro503Ala, Arg567Gly, Gly1194Asp, and Arg1210Cys. Compared to control FH, Arg2Thr, Leu3Val, Ser58Ala, Asp90Gly, Asp130Asn, Gln400Lys, Tyr402His, Gly650Val, Ser890Ile, and Thr965Met showed minimal functional differences. Arg1210C, Arg53His, Arg175Gln, Gly1194Asp, Pro503Ala, Arg53Cys, Arg576Gly, and Arg175Pro (in order of decreasing efficacy) underperformed, while Ile221Val, Arg303Gln, and Arg303Trp were "marginal." We newly identified variants toward the center of the molecule, Pro503Ala and Arg567Gly, as potentially pathogenic. Conclusions: Our approach could be extended to other variants of uncertain significance and to assays for noncanonical FH activities, aiming to facilitate selection of cohorts most likely to benefit from therapeutic FH. This is timely as recombinant therapeutic FH is in development for intravitreal treatment of AMD in patients with reduced FH functionality.


Subject(s)
Complement Factor H , Macular Degeneration , Animals , Humans , Acceleration , Complement Factor H/genetics , Complement Membrane Attack Complex , Complement System Proteins , Macular Degeneration/genetics , Sheep
2.
Curr Eye Res ; 47(7): 1087-1093, 2022 07.
Article in English | MEDLINE | ID: mdl-35282732

ABSTRACT

PURPOSE: GEM103 is a recombinantly produced full-length version of the human complement factor H (CFH) under clinical investigation for treatment of age-related macular degeneration (AMD) in individuals carrying an AMD risk-associated genetic variant of CFH. This study aimed to investigate the complement pathway-related functions of GEM103 in comparison with those of native human CFH. METHODS: Key biological activities of GEM103 and human serum-derived CFH (sdCFH) were compared using four independent functional assays. Assays of C3b binding and C3 convertase decay-accelerating activity (DAA) were performed by surface plasmon resonance (SPR). Cofactor activity (CA) was measured using 8-anilinonaphthalene-1-sulfonic acid as a fluorescent probe of C3b integrity. The abilities of GEM103 and sdCFH to protect sheep erythrocytes from hemolysis by CFH-depleted normal human serum were assessed colorimetrically. RESULTS: In multiple SPR-based assays of C3b binding and DAA, the performance of GEM103 was consistently comparable to that of sdCFH across a range of matching concentrations. The EC50 ± SD in the fluorescence-based fluid-phase CA assay was 0.21 ± 0.06 µM for GEM103 compared to 0.20 ± 0.09 µM for sdCFH. In hemolysis assays, the EC50 value of 0.33 ± 0.16 µM for GEM103 versus 0.46 ± 0.06 µM for sdCFH were not significantly different (p = 0.81). CONCLUSIONS: GEM103, a recombinant CFH developed by Gemini Therapeutics, shows activity profiles comparable to sdCFH in all complement-related assays employed in this study, suggesting that GEM103 is equivalent to the native glycoprotein in terms of its in vitro functional activity. These results support further study of GEM103 as a potential therapy for AMD.


Subject(s)
Complement Factor H , Macular Degeneration , Animals , Complement Factor H/genetics , Complement Factor H/metabolism , Hemolysis , Humans , Macular Degeneration/drug therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Polymorphism, Single Nucleotide , Sheep
3.
Front Immunol ; 12: 681098, 2021.
Article in English | MEDLINE | ID: mdl-34054871

ABSTRACT

Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen.


Subject(s)
Complement C3/immunology , Complement C3/metabolism , Complement Factor H/biosynthesis , Complement Factor H/deficiency , Protein Disulfide-Isomerases/metabolism , Recombinant Proteins/metabolism , Animals , Gene Expression , Immunomodulation , Mice , Mice, Knockout , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Yeasts/genetics , Yeasts/metabolism
4.
J Am Soc Nephrol ; 29(6): 1649-1661, 2018 06.
Article in English | MEDLINE | ID: mdl-29588430

ABSTRACT

Background C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway of complement activation, and treatment options for C3G remain limited. Complement factor H (FH) is a potent regulator of the alternative pathway and might offer a solution, but the mass and complexity of FH makes generation of full-length FH far from trivial. We previously generated a mini-FH construct, with FH short consensus repeats 1-5 linked to repeats 18-20 (FH1-5^18-20), that was effective in experimental C3G. However, the serum t1/2 of FH1-5^18-20 was significantly shorter than that of serum-purified FH.Methods We introduced the oligomerization domain of human FH-related protein 1 (denoted by R1-2) at the carboxy or amino terminus of human FH1-5^18-20 to generate two homodimeric mini-FH constructs (FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2, respectively) in Chinese hamster ovary cells and tested these constructs using binding, fluid-phase, and erythrocyte lysis assays, followed by experiments in FH-deficient Cfh-/- mice.Results FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2 homodimerized in solution and displayed avid binding profiles on clustered C3b surfaces, particularly FHR1-2^1-5^18-20 Each construct was >10-fold more effective than FH at inhibiting cell surface complement activity in vitro and restricted glomerular basement membrane C3 deposition in vivo significantly better than FH or FH1-5^18-20 FH1-5^18-20^R1-2 had a C3 breakdown fragment binding profile similar to that of FH, a >5-fold increase in serum t1/2 compared with that of FH1-5^18-20, and significantly better retention in the kidney than FH or FH1-5^18-20Conclusions FH1-5^18-20^R1-2 may have utility as a treatment option for C3G or other complement-mediated diseases.


Subject(s)
Complement C3/metabolism , Complement C3b/metabolism , Complement Factor H/metabolism , Complement Factor H/pharmacokinetics , Glomerulonephritis, Membranoproliferative/metabolism , Animals , Complement Factor H/chemical synthesis , Complement Factor H/genetics , Complement Pathway, Alternative , Cricetinae , Glomerular Basement Membrane/metabolism , Glomerulonephritis, Membranoproliferative/drug therapy , Half-Life , Mice , Protein Binding , Protein Engineering
5.
Front Immunol ; 8: 1586, 2017.
Article in English | MEDLINE | ID: mdl-29218045

ABSTRACT

Platelet/granulocyte aggregates (PGAs) increase thromboinflammation in the vasculature, and PGA formation is tightly controlled by the complement alternative pathway (AP) negative regulator, Factor H (FH). Mutations in FH are associated with the prothrombotic disease atypical hemolytic uremic syndrome (aHUS), yet it is unknown whether increased PGA formation contributes to the thrombosis seen in patients with aHUS. Here, flow cytometry assays were used to evaluate the effects of aHUS-related mutations on FH regulation of PGA formation and characterize the mechanism. Utilizing recombinant fragments of FH spanning the entire length of the protein, we mapped the regions of FH most critical for limiting AP activity on the surface of isolated human platelets and neutrophils, as well as the regions most critical for regulating PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP). FH domains 19-20 were the most critical for limiting AP activity on platelets, neutrophils, and at the platelet/granulocyte interface. The role of FH in PGA formation was attributed to its ability to regulate AP-mediated C5a generation. AHUS-related mutations in domains 19-20 caused differential effects on control of PGA formation and AP activity on platelets and neutrophils. Our data indicate FH C-terminal domains are key for regulating PGA formation, thus increased FH protection may have a beneficial impact on diseases characterized by increased PGA formation, such as cardiovascular disease. Additionally, aHUS-related mutations in domains 19-20 have varying effects on control of TRAP-mediated PGA formation, suggesting that some, but not all, aHUS-related mutations may cause increased PGA formation that contributes to excessive thrombosis in patients with aHUS.

6.
J Biol Chem ; 292(32): 13345-13360, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28637873

ABSTRACT

Spontaneous activation enables the complement system to respond very rapidly to diverse threats. This activation is efficiently suppressed by complement factor H (CFH) on self-surfaces but not on foreign surfaces. The surface selectivity of CFH, a soluble protein containing 20 complement-control protein modules (CCPs 1-20), may be compromised by disease-linked mutations. However, which of the several functions of CFH drives this self-surface selectivity remains unknown. To address this, we expressed human CFH mutants in Pichia pastoris We found that recombinant I62-CFH (protective against age-related macular degeneration) and V62-CFH functioned equivalently, matching or outperforming plasma-derived CFH, whereas R53H-CFH, linked to atypical hemolytic uremic syndrome (aHUS), was defective in C3bBb decay-accelerating activity (DAA) and factor I cofactor activity (CA). The aHUS-linked CCP 19 mutant D1119G-CFH had virtually no CA on (self-like) sheep erythrocytes (ES) but retained DAA. The aHUS-linked CCP 20 mutant S1191L/V1197A-CFH (LA-CFH) had dramatically reduced CA on ES but was less compromised in DAA. D1119G-CFH and LA-CFH both performed poorly at preventing complement-mediated hemolysis of ES PspCN, a CFH-binding Streptococcus pneumoniae protein domain, binds CFH tightly and increases accessibility of CCPs 19 and 20. PspCN did not improve the DAA of any CFH variant on ES Conversely, PspCN boosted the CA, on ES, of I62-CFH, R53H-CFH, and LA-CFH and also enhanced hemolysis protection by I62-CFH and LA-CFH. We conclude that CCPs 19 and 20 are critical for efficient CA on self-surfaces but less important for DAA. Exposing CCPs 19 and 20 with PspCN and thus enhancing CA on self-surfaces may reverse deficiencies of some CFH variants.


Subject(s)
Atypical Hemolytic Uremic Syndrome/genetics , Complement Activation , Macular Degeneration/genetics , Mutation , Amino Acid Substitution , Animals , Atypical Hemolytic Uremic Syndrome/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Complement C3 Convertase, Alternative Pathway/chemistry , Complement C3 Convertase, Alternative Pathway/genetics , Complement C3 Convertase, Alternative Pathway/metabolism , Complement C3d/chemistry , Complement C3d/genetics , Complement C3d/metabolism , Complement Factor H/chemistry , Complement Factor H/genetics , Complement Factor H/metabolism , Complement Factor I/chemistry , Complement Factor I/genetics , Complement Factor I/metabolism , Erythrocytes/chemistry , Hemolysis , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/genetics , Immobilized Proteins/metabolism , Macular Degeneration/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sheep, Domestic , Solubility , Streptococcus pneumoniae/metabolism , Surface Properties
7.
Biochem Soc Trans ; 43(5): 812-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26517887

ABSTRACT

Complement control protein modules (CCPs) occur in numerous functionally diverse extracellular proteins. Also known as short consensus repeats (SCRs) or sushi domains each CCP contains approximately 60 amino acid residues, including four consensus cysteines participating in two disulfide bonds. Varying in length and sequence, CCPs adopt a ß-sandwich type fold and have an overall prolate spheroidal shape with N- and C-termini lying close to opposite poles of the long axis. CCP-containing proteins are important as cytokine receptors and in neurotransmission, cell adhesion, blood clotting, extracellular matrix formation, haemoglobin metabolism and development, but CCPs are particularly well represented in the vertebrate complement system. For example, factor H (FH), a key soluble regulator of the alternative pathway of complement activation, is made up entirely from a chain of 20 CCPs joined by short linkers. Collectively, therefore, the 20 CCPs of FH must mediate all its functional capabilities. This is achieved via collaboration and division of labour among these modules. Structural studies have illuminated the dynamic architectures that allow FH and other CCP-rich proteins to perform their biological functions. These are largely the products of a highly varied set of intramolecular interactions between CCPs. The CCP can act as building block, spacer, highly versatile recognition site or dimerization mediator. Tandem CCPs may form composite binding sites or contribute to flexible, rigid or conformationally 'switchable' segments of the parent proteins.


Subject(s)
Complement Activating Enzymes/chemistry , Complement Activation , Complement Inactivator Proteins/chemistry , Drug Design , Models, Molecular , Protein Engineering , Animals , Binding Sites , Complement Activating Enzymes/genetics , Complement Activating Enzymes/metabolism , Complement Factor H/chemistry , Complement Factor H/genetics , Complement Factor H/metabolism , Complement Inactivating Agents/chemistry , Complement Inactivating Agents/metabolism , Complement Inactivating Agents/pharmacology , Complement Inactivator Proteins/genetics , Complement Inactivator Proteins/metabolism , Humans , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
8.
J Immunol ; 195(10): 4986-98, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26459349

ABSTRACT

In an attempt to evade annihilation by the vertebrate complement system, many microbes capture factor H (FH), the key soluble complement-regulating protein in human plasma. However, FH is normally an active complement suppressor exclusively on self-surfaces and this selective action of FH is pivotal to self versus non-self discrimination by the complement system. We investigated whether the bacterially captured FH becomes functionally enhanced and, if so, how this is achieved at a structural level. We found, using site-directed and truncation mutagenesis, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and cross-linking and mass spectrometry, that the N-terminal domain of Streptococcus pneumoniae protein PspC (PspCN) not only binds FH extraordinarily tightly but also holds it in a previously uncharacterized conformation. Functional enhancement arises from exposure of a C-terminal cryptic second binding site in FH for C3b, the activation-specific fragment of the pivotal complement component, C3. This conformational change of FH doubles its affinity for C3b and increases 5-fold its ability to accelerate decay of the binary enzyme (C3bBb) responsible for converting C3 to C3b in an amplification loop. Despite not sharing critical FH-binding residues, PspCNs from D39 and Tigr4 S. pneumoniae exhibit similar FH-anchoring and enhancing properties. We propose that these bacterial proteins mimic molecular markers of self-surfaces, providing a compelling hypothesis for how FH prevents complement-mediated injury to host tissue while lacking efficacy on virtually all other surfaces. In hemolysis assays with 2-aminoethylisothiouronium bromide-treated erythrocytes that recapitulate paroxysmal nocturnal hemoglobinuria, PspCN enhanced protection of cells by FH, suggesting a new paradigm for therapeutic complement suppression.


Subject(s)
Bacterial Proteins/chemistry , Complement C3b/chemistry , Complement Factor H/chemistry , Streptococcus pneumoniae/chemistry , Bacterial Proteins/immunology , Complement C3b/immunology , Complement Factor H/immunology , Hemoglobinuria, Paroxysmal/immunology , Humans , Protein Structure, Tertiary , Streptococcus pneumoniae/immunology
9.
Nat Chem Biol ; 11(1): 77-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25402769

ABSTRACT

The serum protein complement factor H (FH) ensures downregulation of the complement alternative pathway, a branch of innate immunity, upon interaction with specific glycans on host cell surfaces. Using ligand-based NMR, we screened a comprehensive set of sialylated glycans for binding to FH and solved the crystal structure of a ternary complex formed by the two C-terminal domains of FH, a sialylated trisaccharide and the complement C3b thioester-containing domain. Key residues in the sialic acid binding site are conserved from mice to men, and residues linked to atypical hemolytic uremic syndrome cluster within this binding site, suggesting a possible role for sialic acid as a host marker also in other mammals and a critical role in human renal complement homeostasis. Unexpectedly, the FH sialic acid binding site is structurally homologous to the binding sites of two evolutionarily unrelated proteins. The crystal structure also advances our understanding of bacterial immune evasion strategies.


Subject(s)
Complement Factor H/chemistry , N-Acetylneuraminic Acid/chemistry , Animals , Binding Sites , Carbohydrate Sequence , Complement C3b/metabolism , Complement Factor H/metabolism , Complement Pathway, Alternative/drug effects , Conserved Sequence , Hemolysis/drug effects , Hemolytic-Uremic Syndrome/genetics , Humans , Mice , Models, Molecular , Molecular Sequence Data , N-Acetylneuraminic Acid/metabolism , Polysaccharides/pharmacology , Sheep
10.
J Am Soc Nephrol ; 25(11): 2425-33, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24722444

ABSTRACT

Complement C3 activation is a characteristic finding in membranoproliferative GN (MPGN). This activation can be caused by immune complex deposition or an acquired or inherited defect in complement regulation. Deficiency of complement factor H has long been associated with MPGN. More recently, heterozygous genetic variants have been reported in sporadic cases of MPGN, although their functional significance has not been assessed. We describe a family with MPGN and acquired partial lipodystrophy. Although C3 nephritic factor was shown in family members with acquired partial lipodystrophy, it did not segregate with the renal phenotype. Genetic analysis revealed a novel heterozygous mutation in complement factor H (R83S) in addition to known risk polymorphisms carried by individuals with MPGN. Patients with MPGN had normal levels of factor H, and structural analysis of the mutant revealed only subtle alterations. However, functional analysis revealed profoundly reduced C3b binding, cofactor activity, and decay accelerating activity leading to loss of regulation of the alternative pathway. In summary, this family showed a confluence of common and rare functionally significant genetic risk factors causing disease. Data from our analysis of these factors highlight the role of the alternative pathway of complement in MPGN.


Subject(s)
Complement Factor H/deficiency , Complement Factor H/genetics , Complement Pathway, Alternative/genetics , Erythrocytes/immunology , Glomerulonephritis, Membranoproliferative/genetics , Glomerulonephritis, Membranoproliferative/immunology , Kidney Diseases/genetics , Animals , Complement Factor H/chemistry , Complement Factor H/immunology , Complement Pathway, Alternative/immunology , Crystallography, X-Ray , Erythrocytes/cytology , Family Health , Female , Haplotypes , Hereditary Complement Deficiency Diseases , Heterozygote , Humans , Kidney Diseases/immunology , Male , Pedigree , Polymorphism, Genetic , Protein Structure, Tertiary , Sheep , Structure-Activity Relationship
11.
Biochemistry ; 52(23): 3949-62, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23701234

ABSTRACT

Factor H (FH) is a soluble regulator of the proteolytic cascade at the core of the evolutionarily ancient vertebrate complement system. Although FH consists of a single chain of similar protein modules, it has a demanding job description. Its chief role is to prevent complement-mediated injury to healthy host cells and tissues. This entails recognition of molecular patterns on host surfaces combined with control of one of nature's most dangerous examples of a positive-feedback loop. In this way, FH modulates, where and when needed, an amplification process that otherwise exponentially escalates the production of the pro-inflammatory, pro-phagocytic, and pro-cytolytic cleavage products of complement proteins C3 and C5. Mutations and single-nucleotide polymorphisms in the FH gene and autoantibodies against FH predispose individuals to diseases, including age-related macular degeneration, dense-deposit disease, and atypical hemolytic uremic syndrome. Moreover, deletions or variations of genes for FH-related proteins also influence the risk of disease. Numerous pathogens hijack FH and use it for self-defense. As reviewed herein, a molecular understanding of FH function is emerging. While its functional oligomeric status remains uncertain, progress has been achieved in characterizing its three-dimensional architecture and, to a lesser extent, its intermodular flexibility. Models are proposed, based on the reconciliation of older data with a wealth of recent evidence, in which a latent circulating form of FH is activated by its principal target, C3b tethered to a self-surface. Such models suggest hypotheses linking sequence variations to pathophysiology, but improved, more quantitative, functional assays and rigorous data analysis are required to test these ideas.


Subject(s)
Complement Activation , Complement Factor H/physiology , Amino Acid Motifs , Binding Sites , Complement C3b/chemistry , Complement C3b/physiology , Complement Factor H/chemistry , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs
12.
J Immunol ; 190(5): 2049-57, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23365078

ABSTRACT

Complement factor H (CFH) regulates complement activation in host tissues through its recognition of polyanions, which mediate CFH binding to host cell surfaces and extracellular matrix, promoting the deactivation of deposited C3b. These polyanions include heparan sulfate (HS), a glycosaminoglycan with a highly diverse range of structures, for which two regions of CFH (CCP6-8 and CCP19-20) have been implicated in HS binding. Mutations/polymorphisms within these glycosaminoglycan-binding sites have been associated with age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome. In this study, we demonstrate that CFH has tissue-specific binding properties mediated through its two HS-binding regions. Our data show that the CCP6-8 region of CFH binds more strongly to heparin (a highly sulfated form of HS) than CCP19-20, and that their sulfate specificities are different. Furthermore, the HS binding site in CCP6-8, which is affected by the AMD-associated Y402H polymorphism, plays the principal role in host tissue recognition in the human eye, whereas the CCP19-20 region makes the major contribution to the binding of CFH in the human kidney. This helps provide a biochemical explanation for the genetic basis of tissue-specific diseases such as AMD and atypical hemolytic uremic syndrome, and leads to a better understanding of the pathogenic mechanisms for these diseases of complement dysregulation.


Subject(s)
Complement Factor H/genetics , Eye/metabolism , Hemolytic-Uremic Syndrome/genetics , Heparitin Sulfate/metabolism , Kidney/metabolism , Macular Degeneration/genetics , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Atypical Hemolytic Uremic Syndrome , Autopsy , Binding Sites , Complement Activation/genetics , Complement Factor H/chemistry , Complement Factor H/metabolism , Escherichia coli/genetics , Eye/pathology , Female , Hemolytic-Uremic Syndrome/metabolism , Hemolytic-Uremic Syndrome/pathology , Humans , Kidney/pathology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Middle Aged , Mutation , Organ Specificity , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
J Am Soc Nephrol ; 24(1): 53-65, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23204401

ABSTRACT

Factor H (fH) and properdin both modulate complement; however, fH inhibits activation, and properdin promotes activation of the alternative pathway of complement. Mutations in fH associate with several human kidney diseases, but whether inhibiting properdin would be beneficial in these diseases is unknown. Here, we found that either genetic or pharmacological blockade of properdin, which we expected to be therapeutic, converted the mild C3 GN of an fH-mutant mouse to a lethal C3 GN with features of human dense deposit disease. We attributed this phenotypic change to a differential effect of properdin on the dynamics of alternative pathway complement activation in the fluid phase and the cell surface in the fH-mutant mice. Thus, in fH mutation-related C3 glomerulopathy, additional factors that impact the activation of the alternative pathway of complement critically determine the nature and severity of kidney pathology. These results show that therapeutic manipulation of the complement system requires rigorous disease-specific target validation.


Subject(s)
Glomerulonephritis, Membranoproliferative/genetics , Kidney Diseases/genetics , Properdin/deficiency , Animals , Complement C3/metabolism , Complement Factor H/deficiency , Complement Factor H/genetics , Complement Pathway, Alternative , Disease Models, Animal , Glomerulonephritis, Membranoproliferative/metabolism , Glomerulonephritis, Membranoproliferative/pathology , Hereditary Complement Deficiency Diseases , Humans , Kidney Glomerulus/ultrastructure , Mice , Mice, Inbred C57BL , Mutation
14.
J Mol Biol ; 424(5): 295-312, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23017427

ABSTRACT

The 155-kDa plasma glycoprotein factor H (FH), which consists of 20 complement control protein (CCP) modules, protects self-tissue but not foreign organisms from damage by the complement cascade. Protection is achieved by selective engagement of FH, via CCPs 1-4, CCPs 6-8 and CCPs 19-20, with polyanion-rich host surfaces that bear covalently attached, activation-specific, fragments of complement component C3. The role of intervening CCPs 9-18 in this process is obscured by lack of structural knowledge. We have concatenated new high-resolution solution structures of overlapping recombinant CCP pairs, 10-11 and 11-12, to form a three-dimensional structure of CCPs 10-12 and validated it by small-angle X-ray scattering of the recombinant triple-module fragment. Superimposing CCP 12 of this 10-12 structure with CCP 12 from the previously solved CCP 12-13 structure yielded an S-shaped structure for CCPs 10-13 in which modules are tilted by 80-110° with respect to immediate neighbors, but the bend between CCPs 10 and 11 is counter to the arc traced by CCPs 11-13. Including this four-CCP structure in interpretation of scattering data for the longer recombinant segments, CCPs 10-15 and 8-15, implied flexible attachment of CCPs 8 and 9 to CCP 10 but compact and intimate arrangements of CCP 14 with CCPs 12, 13 and 15. Taken together with difficulties in recombinant production of module pairs 13-14 and 14-15, the aberrant structure of CCP 13 and the variability of 13-14 linker sequences among orthologues, a structural dependency of CCP 14 on its neighbors is suggested; this has implications for the FH mechanism.


Subject(s)
Complement Factor H/chemistry , Complement Factor H/metabolism , Magnetic Resonance Spectroscopy , Humans , Models, Molecular , Protein Conformation
15.
J Biol Chem ; 287(45): 38231-43, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-22989873

ABSTRACT

Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-ß (PI4KIIIß) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIß. CaBP7 NTD encompasses the two high affinity Ca(2+) binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca(2+) but not Mg(2+) and undergoes significant conformational changes in both secondary and tertiary structure upon Ca(2+) binding. The Ca(2+)-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca(2+)-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIß.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Golgi Apparatus/metabolism , Magnetic Resonance Spectroscopy/methods , Amino Acid Sequence , Animals , Binding Sites/genetics , Blotting, Western , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Cattle , Circular Dichroism , Humans , Hydrophobic and Hydrophilic Interactions , Minor Histocompatibility Antigens , Models, Molecular , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport , Sequence Homology, Amino Acid , Solutions , Surface Properties
16.
PLoS One ; 7(7): e41975, 2012.
Article in English | MEDLINE | ID: mdl-22848679

ABSTRACT

Dietary restriction (DR) extends lifespan in yeast, worms, flies and mammals, suggesting that it may act via conserved processes. However, the downstream mechanisms by which DR increases lifespan remain unclear. We used a gel based proteomic strategy to identify proteins whose expression was induced by DR in yeast and thus may correlate with longevity. One protein up-regulated by DR was Hsp12, a small heat shock protein induced by various manipulations known to retard ageing. Lifespan extension by growth on 0.5% glucose (DR) was abolished in an hsp12Δ strain, indicating that Hsp12 is essential for the longevity effect of DR. In contrast, deletion of HSP12 had no effect on growth under DR conditions or a variety of environmental stresses, indicating that the effect of Hsp12 on lifespan is not due to increased general stress resistance. Unlike other small heat shock proteins, recombinant Hsp12 displayed negligible in vitro molecular chaperone activity, suggesting that its cellular function does not involve preventing protein aggregation. NMR analysis indicated that Hsp12 is monomeric and intrinsically unfolded in solution, but switches to a 4-helical conformation upon binding to membrane-mimetic SDS micelles. The structure of micelle-bound Hsp12 reported here is consistent with its recently proposed function as a membrane-stabilising 'lipid chaperone'. Taken together, our data suggest that DR-induced Hsp12 expression contributes to lifespan extension, possibly via membrane alterations.


Subject(s)
Glucose/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal , Models, Molecular , Phenotype , Protein Structure, Secondary , Proteomics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Time Factors
17.
Mol Immunol ; 52(3-4): 200-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22721707

ABSTRACT

Factor H autoantibodies are found in ~10% of aHUS patients. Most are associated with complete deficiency of factor H related proteins 1/3 and bind to the C terminal recognition domain. MPGN, like aHUS, is characterised by complement activation. In this study we, therefore, examined the hypothesis that factor H autoantibodies are associated with MPGN. We screened sera from 16 MPGN patients and 100 normal controls using ELISA and detected strongly positive IgG factor H autoantibodies in 2 patients. One patient had type II (DDD) MPGN (male aged 24 yrs) with C3NeF and the other type I (female aged 26 yrs) with no detectable C3NeF. We identified the binding site of the autoantibodies using small SCR domain fragments in the ELISA and showed that the autoantibodies in both patients bound predominately to the N terminal complement regulatory domain of factor H. We measured CFHR 1/3 copy number using MLPA and showed that both patients had 2 copies of CFHR1 and 3. Finally, we examined the functionality of detected factor H autoantibodies using purified patient IgG and observed increased haemolysis when purified IgG from both patients was added to normal human sera prior to incubation with rabbit red blood cells. Thus, in a cohort of MPGN patients we have found a high titre of functionally significant factor H autoantibodies in two patients with MPGN. Antibody depleting therapy may have a role in such patients and we suggest that screening for factor H autoantibodies should be undertaken in all patients with MPGN.


Subject(s)
Autoantibodies/blood , Autoantibodies/immunology , Complement Factor H/immunology , Glomerulonephritis, Membranoproliferative/immunology , Adolescent , Adult , Aged , Binding Sites, Antibody , Complement C3 , Complement C3 Nephritic Factor/analysis , Complement Factor H/chemistry , Female , Glomerulonephritis, Membranoproliferative/genetics , Humans , Male , Middle Aged , Young Adult
18.
PLoS One ; 7(2): e32187, 2012.
Article in English | MEDLINE | ID: mdl-22389686

ABSTRACT

Factor H (FH) is a soluble regulator of the human complement system affording protection to host tissues. It selectively inhibits amplification of C3b, the activation-specific fragment of the abundant complement component C3, in fluid phase and on self-surfaces and accelerates the decay of the alternative pathway C3 convertase, C3bBb. We have determined the crystal structure of the three carboxyl-terminal complement control protein (CCP) modules of FH (FH18-20) that bind to C3b, and which additionally recognize polyanionic markers specific to self-surfaces. These CCPs harbour nearly 30 disease-linked missense mutations. We have also deployed small-angle X-ray scattering (SAXS) to investigate FH18-20 flexibility in solution using FH18-20 and FH19-20 constructs. In the crystal lattice FH18-20 adopts a "J"-shape: A ~122-degree tilt between the structurally highly similar modules 18 and 19 precedes an extended, linear arrangement of modules 19 and 20 as observed in previously determined structures of these two modules alone. However, under solution conditions FH18-20 adopts multiple conformations mediated by flexibility between CCPs 18 and 19. We also pinpoint the locations of disease-associated missense mutations on the module 18 surface and discuss our data in the context of the C3b:FH interaction.


Subject(s)
Complement Factor H/chemistry , Complement Factor H/genetics , Complement Factor H/metabolism , Crystallography, X-Ray , Humans , Protein Structure, Secondary , Scattering, Small Angle
19.
Biochemistry ; 51(9): 1874-84, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22320225

ABSTRACT

Numerous complement factor H (FH) mutations predispose patients to atypical hemolytic uremic syndrome (aHUS) and other disorders arising from inadequately regulated complement activation. No unifying structural or mechanistic consequences have been ascribed to these mutants beyond impaired self-cell protection. The S1191L and V1197A mutations toward the C-terminus of FH, which occur in patients singly or together, arose from gene conversion between CFH encoding FH and CFHR1 encoding FH-related 1. We show that neither single nor double mutations structurally perturbed recombinant proteins consisting of the FH C-terminal modules, 19 and 20 (FH19-20), although all three FH19-20 mutants were poor, compared to wild-type FH19-20, at promoting hemolysis of C3b-coated erythrocytes through competition with full-length FH. Indeed, our new crystal structure of the S1191L mutant of FH19-20 complexed with an activation-specific complement fragment, C3d, was nearly identical to that of the wild-type FH19-20:C3d complex, consistent with mutants binding to C3b with wild-type-like affinity. The S1191L mutation enhanced thermal stability of module 20, whereas the V1197A mutation dramatically decreased it. Thus, although mutant proteins were folded at 37 °C, they differ in conformational rigidity. Neither single substitutions nor double substitutions increased measurably the extent of FH19-20 self-association, nor did these mutations significantly affect the affinity of FH19-20 for three glycosaminoglycans, despite critical roles of module 20 in recognizing polyanionic self-surface markers. Unexpectedly, FH19-20 mutants containing Leu1191 self-associated on a heparin-coated surface to a higher degree than on surfaces coated with dermatan or chondroitin sulfates. Thus, potentially disease-related functional distinctions between mutants, and between FH and FH-related 1, may manifest in the presence of specific glycosaminoglycans.


Subject(s)
Complement Factor H/chemistry , Complement Factor H/genetics , Gene Conversion , Complement C3b/chemistry , Complement C3d/chemistry , Complement Factor H/metabolism , Crystallography, X-Ray , Humans , Mutation , Pichia/genetics , Pichia/metabolism , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Temperature
20.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 7): 593-600, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21697597

ABSTRACT

The soluble 155 kDa glycoprotein factor H (FH) protects host tissue from damage by the human complement system. It accelerates decay of the alternative-pathway C3 convertase, C3bBb, and is a cofactor for factor I-mediated cleavage of the opsonin C3b. Numerous mutations and single-nucleotide polymorphisms (SNPs) occur in the gene encoding FH and the resulting missense mutations and truncation products result in altered functionality that predisposes to the development of the serious renal condition atypical haemolytic uraemic syndrome (aHUS). Other polymorphisms are linked to membranoproliferative glomerulonephritis and macular degeneration. The two C-terminal modules of FH (FH19-20) harbour numerous aHUS-associated mutations that disrupt the ability of factor H to protect host cells from complement-mediated damage. In this work, the crystal structure of an aHUS-associated T1184R variant of FH19-20 at a resolution of 1.52 Šis described. It is shown that this mutation has negligible structural effects but causes a significant change in the electrostatic surface of these two domains. Mechanisms are discussed by which this mutation may alter FH-ligand interactions, particularly with regard to the extension of a region of this molecule within module 20 that has been associated with the binding of glycosaminoglycans (GAGs) or sialic acid residues.


Subject(s)
Complement Factor H/chemistry , Hemolytic-Uremic Syndrome/genetics , Mutation , Atypical Hemolytic Uremic Syndrome , Complement Factor H/genetics , Crystallography, X-Ray , Models, Molecular , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL