Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 9: 109, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22642871

ABSTRACT

BACKGROUND: The primary olfactory pathway is a potential route through which microorganisms from the periphery could potentially access the central nervous system. Our previous studies demonstrated that if the olfactory epithelium was damaged, bacteria administered into the nasal cavity induced nitric oxide production in olfactory ensheathing cells. This study investigates the cytokine profile of olfactory tissues as a consequence of bacterial challenge and establishes whether or not the bacteria are able to reach the olfactory bulb in the central nervous system. METHODS: The olfactory epithelium of C57BL/6 mice was damaged by unilateral Triton X-100 nasal washing, and Staphylococcus aureus was administered ipsilaterally 4 days later. Olfactory mucosa and bulb were harvested 6 h, 24 h and 5 days after inoculation and their cytokine profile compared to control tissues. The fate of S. aureus and the response of bulbar microglia were examined using fluorescence microscopy and transmission electron microscopy. RESULTS: In the olfactory mucosa, administered S. aureus was present in supporting cells of the olfactory epithelium, and macrophages and olfactory nerve bundles in the lamina propria. Fluorescein isothiocyanate-conjugated S. aureus was observed within the olfactory mucosa and bulb 6 h after inoculation, but remained restricted to the peripheral layers up to 5 days later. At the 24-h time point, the level of interleukin-6 (IL-6) and tumour necrosis factor-α in the compromised olfactory tissues challenged with bacteria (12,466 ± 956 pg/ml and 552 ± 193 pg/ml, respectively) was significantly higher than that in compromised olfactory tissues alone (6,092 ± 1,403 pg/ml and 80 ± 2 pg/ml, respectively). Immunohistochemistry confirmed that IL-6 was present in several cell types including olfactory ensheathing cells and mitral cells of the olfactory bulb. Concurrently, there was a 4.4-, 4.5- and 2.8-fold increase in the density of iNOS-expressing cells in the olfactory mucosa, olfactory nerve and glomerular layers combined, and granule layer of the olfactory bulb, respectively. CONCLUSIONS: Bacteria are able to penetrate the immunological defence of the compromised olfactory mucosa and infiltrate the olfactory bulb within 6 h even though a proinflammatory profile is mounted. Activated microglia may have a role in restricting bacteria to the outer layers of the olfactory bulb.


Subject(s)
Cytokines/physiology , Microglia/immunology , Olfactory Bulb/microbiology , Olfactory Pathways/immunology , Olfactory Pathways/microbiology , Staphylococcus aureus , Animals , Immunocompromised Host , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/microbiology , Olfactory Bulb/immunology , Olfactory Bulb/metabolism , Olfactory Mucosa/immunology , Olfactory Mucosa/metabolism , Olfactory Mucosa/microbiology , Olfactory Pathways/metabolism , Random Allocation , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity
2.
Cell Mol Life Sci ; 69(5): 809-17, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21833580

ABSTRACT

Prior studies have reported that metallothionein I/II (MT) promote regenerative axonal sprouting and neurite elongation of a variety of central nervous system neurons after injury. In this study, we evaluated whether MT is capable of modulating regenerative axon outgrowth of neurons from the peripheral nervous system. The effect of MT was firstly investigated in dorsal root ganglion (DRG) explants, where axons were scratch-injured in the presence or absence of exogenous MT. The application of MT led to a significant increase in regenerative sprouting of neurons 16 h after injury. We show that the pro-regenerative effect of MT involves an interaction with the low-density lipoprotein receptor megalin, which could be blocked using the competitive antagonist RAP. Pre-treatment with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 also completely abrogated the effect of exogenous MT in promoting axonal outgrowth. Interestingly, we only observed megalin expression in neuronal soma and not axons in the DRG explants. To investigate this matter, an in vitro injury model was established using Campenot chambers, which allowed the application of MT selectively into either the axonal or cell body compartments after scratch injury was performed to axons. At 16 h after injury, regenerating axons were significantly longer only when exogenous MT was applied solely to the soma compartment, in accordance with the localized expression of megalin in neuronal cell bodies. This study provides a clear indication that MT promotes axonal regeneration of DRG neurons, via a megalin- and MAPK-dependent mechanism.


Subject(s)
Axons/physiology , Ganglia, Spinal/pathology , Metallothionein/pharmacology , Nerve Regeneration , Neurons/metabolism , Animals , Axons/drug effects , Axotomy , Cells, Cultured , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Neurons/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL