Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18617, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37903836

ABSTRACT

ChatGPT and similar generative AI models have attracted hundreds of millions of users and have become part of the public discourse. Many believe that such models will disrupt society and lead to significant changes in the education system and information generation. So far, this belief is based on either colloquial evidence or benchmarks from the owners of the models-both lack scientific rigor. We systematically assess the quality of AI-generated content through a large-scale study comparing human-written versus ChatGPT-generated argumentative student essays. We use essays that were rated by a large number of human experts (teachers). We augment the analysis by considering a set of linguistic characteristics of the generated essays. Our results demonstrate that ChatGPT generates essays that are rated higher regarding quality than human-written essays. The writing style of the AI models exhibits linguistic characteristics that are different from those of the human-written essays. Since the technology is readily available, we believe that educators must act immediately. We must re-invent homework and develop teaching concepts that utilize these AI models in the same way as math utilizes the calculator: teach the general concepts first and then use AI tools to free up time for other learning objectives.

2.
BMC Bioinformatics ; 24(1): 327, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653395

ABSTRACT

BACKGROUND: The Earth Biogenome Project has rapidly increased the number of available eukaryotic genomes, but most released genomes continue to lack annotation of protein-coding genes. In addition, no transcriptome data is available for some genomes. RESULTS: Various gene annotation tools have been developed but each has its limitations. Here, we introduce GALBA, a fully automated pipeline that utilizes miniprot, a rapid protein-to-genome aligner, in combination with AUGUSTUS to predict genes with high accuracy. Accuracy results indicate that GALBA is particularly strong in the annotation of large vertebrate genomes. We also present use cases in insects, vertebrates, and a land plant. GALBA is fully open source and available as a docker image for easy execution with Singularity in high-performance computing environments. CONCLUSIONS: Our pipeline addresses the critical need for accurate gene annotation in newly sequenced genomes, and we believe that GALBA will greatly facilitate genome annotation for diverse organisms.


Subject(s)
Eukaryota , Eukaryotic Cells , Animals , Molecular Sequence Annotation , Transcriptome
3.
bioRxiv ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090650

ABSTRACT

The Earth Biogenome Project has rapidly increased the number of available eukaryotic genomes, but most released genomes continue to lack annotation of protein-coding genes. In addition, no transcriptome data is available for some genomes. Various gene annotation tools have been developed but each has its limitations. Here, we introduce GALBA, a fully automated pipeline that utilizes miniprot, a rapid protein- to-genome aligner, in combination with AUGUSTUS to predict genes with high accuracy. Accuracy results indicate that GALBA is particularly strong in the annotation of large vertebrate genomes. We also present use cases in insects, vertebrates, and a previously unannotated land plant. GALBA is fully open source and available as a docker image for easy execution with Singularity in high-performance computing environments. Our pipeline addresses the critical need for accurate gene annotation in newly sequenced genomes, and we believe that GALBA will greatly facilitate genome annotation for diverse organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...