Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 13(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37763096

ABSTRACT

Glioblastoma (GB) is a malignant glioma associated with a mean overall survival of 12 to 18 months, even with optimal treatment, due to its high relapse rate and treatment resistance. The standardized first-line treatment consists of surgery, which allows for diagnosis and cytoreduction, followed by stereotactic fractionated radiotherapy and chemotherapy. Treatment failure can result from the poor passage of drugs through the blood-brain barrier (BBB). The development of novel and more effective therapeutic approaches is paramount to increasing the life expectancy of GB patients. Nanoparticle-based treatments include epitopes that are designed to interact with specialized transport systems, ultimately allowing the crossing of the BBB, increasing therapeutic efficacy, and reducing systemic toxicity and drug degradation. Polymeric nanoparticles have shown promising results in terms of precisely directing drugs to the brain with minimal systemic side effects. Various methods of drug delivery that pass through the BBB, such as the stereotactic injection of nanoparticles, are being actively tested in vitro and in vivo in animal models. A significant variety of pre-clinical studies with polymeric nanoparticles for the treatment of GB are being conducted, with only a few nanoparticle-based drug delivery systems to date having entered clinical trials. Pre-clinical studies are key to testing the safety and efficacy of these novel anticancer therapies and will hopefully facilitate the testing of the clinical validity of this promising treatment method. Here we review the recent literature concerning the most frequently reported types of nanoparticles for the treatment of GB.

2.
Pharmaceutics ; 15(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36986790

ABSTRACT

Glioblastoma multiforme (GBM) remains a challenging disease, as it is the most common and deadly brain tumour in adults and has no curative solution and an overall short survival time. This incurability and short survival time means that, despite its rarity (average incidence of 3.2 per 100,000 persons), there has been an increased effort to try to treat this disease. Standard of care in newly diagnosed glioblastoma is maximal tumour resection followed by initial concomitant radiotherapy and temozolomide (TMZ) and then further chemotherapy with TMZ. Imaging techniques are key not only to diagnose the extent of the affected tissue but also for surgery planning and even for intraoperative use. Eligible patients may combine TMZ with tumour treating fields (TTF) therapy, which delivers low-intensity and intermediate-frequency electric fields to arrest tumour growth. Nonetheless, the blood-brain barrier (BBB) and systemic side effects are obstacles to successful chemotherapy in GBM; thus, more targeted, custom therapies such as immunotherapy and nanotechnological drug delivery systems have been undergoing research with varying degrees of success. This review proposes an overview of the pathophysiology, possible treatments, and the most (not all) representative examples of the latest advancements.

3.
J Neurosurg ; 118(5): 1107-13, 2013 May.
Article in English | MEDLINE | ID: mdl-23432145

ABSTRACT

OBJECT: The removal of mesial temporal structures, namely amygdalohippocampectomy, is the most efficient surgical procedure for the treatment of epilepsy. However, disconnection of the epileptogenic zones, as in temporal lobotomy or, for different purposes, hemispherotomy, have shown equivalent results with less morbidity. Thus, authors of the present study began performing selective amygdalohippocampotomy in cases of refractory mesial temporal lobe epilepsy (TLE) to treat mesial temporal lobe sclerosis (MTLS). METHOD: The authors conducted a retrospective analysis of all cases of amygdalohippocampotomy collected in a database between November 2007 and March 2011. RESULTS: Since 2007, 21 patients (14 males and 7 females), ages 20-58 years (mean 41 years), all with TLE due to MTLS, were treated with selective ablation of the lateral amygdala plus perihippocampal disconnection (anterior one-half to two-thirds in dominant hemisphere), the left side in 11 cases and the right in 10. In 20 patients the follow-up was 2 or more years (range 24-44 months, average 32 months). Clinical outcome for epilepsy 2 years after surgery (20 patients) was good/very good in 19 patients (95%) with an Engel Class I (15 patients [75%]) or II outcome (4 patients [20%]) and bad in 1 patient (5%) with an Engel Class IV outcome (extratemporal focus and later reoperation). Surgical morbidity included hemiparesis (capsular hypertensive hemorrhage 24 hours after surgery, 1 patient), verbal memory worsening (2 patients), and quadrantanopia (permanent in 2 patients, transient in 1). Late psychiatric depression developed in 3 cases. Operative time was reduced by about 30 minutes (15%) on average with this technique. CONCLUSIONS: Amygdalohippocampotomy is as effective as amygdalohippocampectomy to treat MTLS and is a potentially safer, time-saving procedure.


Subject(s)
Amygdala/surgery , Epilepsy, Temporal Lobe/surgery , Hippocampus/surgery , Neurosurgical Procedures/methods , Temporal Lobe/pathology , Adult , Female , Follow-Up Studies , Humans , Male , Middle Aged , Patient Safety , Retrospective Studies , Sclerosis , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...