Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Plants (Basel) ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999705

ABSTRACT

Bell pepper plants are sensitive to environmental changes and are significantly affected by abiotic factors such as UV-B radiation and cold, which reduce their yield and production. Various approaches, including omics data integration, have been employed to understand the mechanisms by which this crop copes with abiotic stress. This study aimed to find metabolic changes in bell pepper stems caused by UV-B radiation and cold by integrating omic data. Proteome and metabolome profiles were generated using liquid chromatography coupled with mass spectrometry, and data integration was performed in the plant metabolic pathway database. The combined stress of UV-B and cold induced the accumulation of proteins related to photosynthesis, mitochondrial electron transport, and a response to a stimulus. Further, the production of flavonoids and their glycosides, as well as affecting carbon metabolism, tetrapyrrole, and scopolamine pathways, were identified. We have made the first metabolic regulatory network map showing how bell pepper stems respond to cold and UV-B stress. We did this by looking at changes in proteins and metabolites that help with respiration, photosynthesis, and the buildup of photoprotective and antioxidant compounds.

2.
Sci Rep ; 14(1): 1146, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212400

ABSTRACT

A supercritical CO2 method was optimized to recover naringenin-rich extract from Mexican oregano (Lippia graveolens), a flavanone with high antioxidant and anti-inflammatory activity. The effect of the extraction parameters like pressure, temperature, and co-solvent on naringenin concentration was evaluated. We used response surface methodology to optimize the naringenin extraction from oregano; the chemical composition by UPLC-MS of the optimized extract and the effect of simulated gastrointestinal digestion on its antioxidant capacity and total phenolic content were also evaluated. The optimum conditions were 58.4 °C and 12.46% co-solvent (ethanol), with a pressure of 166 bar, obtaining a naringenin content of 46.59 mg/g extract. Also, supercritical optimized extracts yielded high quantities of cirsimaritin, quercetin, phloridzin, apigenin, and luteolin. The results indicated that the naringenin-rich extract obtained at optimized conditions had higher total phenolic content, antioxidant capacity by TEAC and ORAC, and flavonoid content, compared with the methanolic extract, and the simulated gastrointestinal digestion reduced all these values.


Subject(s)
Flavanones , Lippia , Origanum , Antioxidants/chemistry , Lippia/chemistry , Origanum/chemistry , Carbon Dioxide , Chromatography, Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Phenols , Solvents/chemistry , Digestion
3.
Plants (Basel) ; 12(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960136

ABSTRACT

Medicines for chronic inflammation can cause gastric ulcers and hepatic and renal issues. An alternative treatment for chronic inflammation is that of natural bioactive compounds, which present low side effects. Extracts of Jatropha cordata (Ortega) Müll. Arg. have been evaluated for their cytotoxicity and anti-inflammatory activity; however, testing pure compounds would be of greater interest. Campesteryl palmitate, n-heptyl ferulate, palmitic acid, and a mixture of sterols, i.e., brassicasterol, campesterol, ß-sitosterol, and stigmasterol, were obtained from an ethyl acetate extract from J. cordata (Ortega) Müll. Arg. bark using column chromatography. The toxicity and in vitro anti-inflammatory activities were evaluated using RAW 264.7 murine macrophage cells. None of the products assessed exhibited toxicity. The sterol mixture exhibited greater anti-inflammatory activity than the positive control, and nitric oxide (NO) inhibition percentages were 37.97% and 41.68% at 22.5 µg/mL and 30 µg/mL, respectively. In addition, n-heptyl ferulate decreased NO by 30.61% at 30 µg/mL, while campesteryl palmitate did not show anti-inflammatory activity greater than the positive control. The mixture and n-heptyl ferulate showed NO inhibition; hence, we may conclude that these compounds have anti-inflammatory potential. Additionally, further research and clinical trials are needed to fully explore the therapeutic potential of these bioactive compounds and their efficacy in treating chronic inflammation.

4.
Mol Biol Rep ; 50(10): 8431-8444, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37624559

ABSTRACT

BACKGROUND: Bell pepper (Capsicum annuum L.) is one of the most economically and nutritionally important vegetables worldwide. However, its production can be affected by various abiotic stresses, such as low temperature. This causes various biochemical, morphological and molecular changes affecting membrane lipid composition, photosynthetic pigments, accumulation of free sugars and proline, secondary metabolism, as well as a change in gene expression. However, the mechanism of molecular response to this type of stress has not yet been elucidated. METHODS AND RESULTS: To further investigate the response mechanism to this abiotic stress, we performed an RNA-Seq transcriptomic analysis to obtain the transcriptomic profile of Capsicum annuum exposed to low temperature stress, where libraries were constructed from reads of control and low temperature stress samples, varying on average per treatment from 22,952,190.5-27,305,327 paired reads ranging in size from 30 to 150 bp. The number of differentially expressed genes (DEGs) for each treatment was 388, 417 and 664 at T-17 h, T-22 h and T-41 h, respectively, identifying 58 up-regulated genes and 169 down-regulated genes shared among the three exposure times. Likewise, 23 DEGs encoding TFs were identified at T-17 h, 30 DEGs at T-22 h and 47 DEGs at T-42 h, respectively. GO analysis revealed that DEGs were involved in catalytic activity, response to temperature stimulus, oxidoreductase activity, stress response, phosphate ion transport and response to abscisic acid. KEGG pathway analysis identified that DEGs were related to flavonoid biosynthesis, alkaloid biosynthesis and plant circadian rhythm pathways in the case of up-regulated genes, while in the case of down-regulated genes, they pertained to MAPK signaling and plant hormone signal transduction pathways, present at all the three time points of low temperature exposure. Validation of the transcriptomic method was performed by evaluation of five DEGs by quantitative polymerase chain reaction (q-PCR). CONCLUSIONS: The data obtained in the present study provide new insights into the transcriptome profiles of Capsicum annuum stem in response to low temperature stress. The data generated may be useful for the identification of key candidate genes and molecular mechanisms involved in response to this type of stress.


Subject(s)
Capsicum , Transcriptome , Transcriptome/genetics , Capsicum/genetics , Temperature , Gene Expression Profiling , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant/genetics
5.
Plants (Basel) ; 12(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37111915

ABSTRACT

Mexican oregano (Lippia graveolens) is an important source of bioactive compounds, such as flavonoids. These have presented different therapeutic properties, including antioxidant and anti-inflammatory; however, their functionality is related to the quantity and type of compounds, and these characteristics depend on the extraction method used. This study aimed to compare different extraction procedures to identify and quantify flavonoids from oregano (Lippia graveolens). Emerging and conventional technologies include maceration with methanol and water, and ultrasound-assisted extraction (UAE) using deep eutectic solvents (DES) such as choline chloride-ethylene glycol, choline chloride-glycerol, and choline chloride-lactic acid. Supercritical fluid extraction using CO2 as a solvent was also studied. Six different extracts were obtained and the total reducing capacity, total flavonoid content, and antioxidant capacity by ABTS•+, DPPH•, FRAP, and ORAC were evaluated. In addition, flavonoids were identified and quantified by UPLC-TQS-MS/MS. Results showed that UAE-DES had the best extraction effect and antioxidant capacity using colorimetric methods. However, maceration-methanol was superior in compound content, and highlighting naringenin and phloridzin were the major compounds. In addition, this extract was microencapsulated by spray drying, which provided a protection feature of their antioxidant potential. Oregano extracts are rich in flavonoids and the microcapsules present promising results for future research.

8.
Plants (Basel) ; 12(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36771644

ABSTRACT

The inflammatory process, although beneficial, can produce tissue damage and systemic damage when uncontrolled. Effective therapeutic alternatives with little or no side effects are of great therapeutic interest. This study aimed to determine the phytochemical composition of bark extracts from J. cordata, an endemic plant from México, and evaluate their in vitro anti-inflammatory activity. Hexane, ethyl acetate, and methanol extracts were characterized by qualitative phytochemical tests, and their bioactive groups were identified by 1H NMR and gas chromatography coupled to mass spectrometry (GC-MS). The extract's anti-inflammatory activity was evaluated as nitric oxide (NO) production and their cytotoxicity by an MTS cell proliferation assay in lipopolysaccharide (LPS)-activated RAW 264.7 cells at concentrations of 1-100 µg/mL. The hexane extract contained fatty acids, fatty esters, phytosterols, alkanes, vitamin E, and terpenoids; the ethyl acetate extract showed fatty acids, fatty esters, aromatic aldehyde, phytosterols, vitamin E, and terpenoids, while the methanolic extract showed fatty esters, fatty acid, aromatics aldehydes, and alcohol. The ethyl acetate extract showed the highest inhibition of NO production, followed by the methanolic extract and the hexane extract, without affecting the viability of RAW 264.7 macrophage cells. The results suggest that J. cordata extracts are a potential source of bioactive compounds with anti-inflammatory potential.

9.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677659

ABSTRACT

A wound is the loss of the normal integrity, structure, and functions of the skin due to a physical, chemical, or mechanical agent. Wound repair consists of an orderly and complex process divided into four phases: coagulation, inflammation, proliferation, and remodeling. The potential of natural products in the treatment of wounds has been reported in numerous studies, emphasizing those with antioxidant, anti-inflammatory, and antimicrobial properties, e.g., alkaloids, saponins, terpenes, essential oils, and polyphenols from different plant sources, since these compounds can interact in the various stages of the wound healing process. This review addresses the most current in vitro and in vivo studies on the wound healing potential of natural products, as well as the main mechanisms involved in this activity. We observed sufficient evidence of the activity of these compounds in the treatment of wounds; however, we also found that there is no consensus on the effective concentrations in which the natural products exert this activity. For this reason, it is important to work on establishing optimal treatment doses, as well as an appropriate route of administration. In addition, more research should be carried out to discover the possible side effects and the behavior of natural products in clinical trials.


Subject(s)
Biological Products , Biological Products/pharmacology , Biological Products/therapeutic use , Wound Healing , Skin , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
10.
Foods ; 11(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36359932

ABSTRACT

Phoradendron brachystachyum is an American mistletoe distributed in México and used ethnobotanically in infusions to treat hypertriglyceridemia and lower cholesterol levels. This study aimed to evaluate the bioaccessibility of the phenolic acids from mistletoe infusions and the effect of simulated digestion on its antioxidant and lipase inhibitory properties. The in vitro digestion process decreased the antioxidant capacity activity by the TEAC and ORAC assays in infusions from leaves, stems, and whole plant samples. Moreover, the individual phenolic content of mistletoe infusions was also affected by the in vitro digestion process; the most abundant individual phenolic constituents at the end of the digestion process were ferulic and quinic acids. These compounds showed low bioaccessibility values ranging from 7.48% to 22.60%. In addition, the in vitro digestion diminished the pancreatic lipase inhibition percentage of leaves and whole plant infusions but increased it in the stem samples. This research showed that given the phenolic content and pancreatic lipase inhibitory activity of mistletoe infusions, it could be used as a potential source for the development of functional foods and nutraceuticals; nonetheless, its phenolic content is affected by gastrointestinal digestion; thus, encapsulation strategies are encouraged to protect these metabolites from the gastrointestinal environment while preserving their antioxidant and hypolipidemic potentials.

11.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296609

ABSTRACT

The eggplant is a fruit rich in natural products and produced worldwide. However, its cultivation generates a large amount of scarcely used agricultural residues with poor chemical characterization. This study aimed to identify and quantify the metabolome and determine the composition of select phytochemicals and the overall antioxidant capacity of various anatomical parts of the plant. The plant's root, leaf, stem, and fruit were analyzed by quantitative mass spectrometry-based untargeted metabolomics and chemoinformatics, and phytochemicals were quantified by spectrophotometric analysis. Moreover, we determined the total antioxidant capacity of the distinct plant parts to infer a possible biological effect of the plant's metabolites. Various secondary metabolites were identified as terpenes, phenolic compounds, alkaloids, and saponins, distributed throughout the plant. The leaf and fruit presented the highest concentration of phenolic compounds, flavonoids, anthocyanins, and alkaloids, accompanied by the highest antioxidant capacity. Although the stem and root showed the lowest abundance of secondary metabolites, they provided around 20% of such compounds compared with the leaf and fruit. Overall, our study improved the understanding of the eggplant metabolome and concluded that the plant is rich in secondary metabolites, some with antioxidant properties, and shows potential nutraceutical and biopharmaceutical applications.


Subject(s)
Saponins , Solanum melongena , Solanum melongena/chemistry , Anthocyanins/chemistry , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Phytochemicals/analysis , Fruit/chemistry , Phenols/chemistry , Flavonoids/analysis , Plant Extracts/chemistry , Metabolomics , Saponins/analysis , Terpenes/analysis
12.
Polymers (Basel) ; 14(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080684

ABSTRACT

Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90-99% and 50-60%, correspondingly. The release profiles in simulated fluids revealed a better control of host-guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.

13.
J Food Biochem ; 46(12): e14388, 2022 12.
Article in English | MEDLINE | ID: mdl-36098212

ABSTRACT

Oregano is the name given to a great variety of herbs belonging mainly to the Lamiaceae and Verbenaceae botanical families. Oregano species are rich sources of phytochemicals such as phenolic compounds like rosmarinic acid, salvianolic acid, and luteolin, among others. A few articles have previously accessed some potential pharmacological bioactivities of oregano plants; however, none has focused on the antidiabetic studies. This review aims to summarize recent studies about the potential effect of phenolic compounds from oregano plant species. The reports were retrieved from electronic databases such as PubMed, Web of Science, National Center for Biotechnology Information (NCBI), and Scopus. In addition, articles related to the mentioned topics and published between 2004-2022 were selected. The results from this study show that the antidiabetic pharmacological reports of oregano phenolic compounds are mainly in vitro reports. Therefore, the diversity of oregano species yields a broad variety of phenolic constituents, where preclinical and clinical studies are strongly recommended.


Subject(s)
Lamiaceae , Origanum , Humans , Origanum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hypoglycemic Agents/pharmacology , Lamiaceae/chemistry , Phenols
14.
J Food Biochem ; 46(12): e14440, 2022 12.
Article in English | MEDLINE | ID: mdl-36169085

ABSTRACT

The Mexican population traditionally uses oregano infusions to treat oxidative and inflammation-related disorders. Therefore, this study was focused on the examination of the antioxidant capacity and potential against inflammation from three Mexican oregano species (Lippia graveolens [LG], Lippia palmeri [LP], and Hedeoma patens [HP]). The extracts from LG showed a superior total phenolic content. LG, LP, and HP exhibited a higher capacity to inhibit the radical DPPH (up to 90.33 ± 0.25%) and significantly lowered the release of MCP-1 and IL-6. At the same time, LG and HP increased the secretion of IL-10. Extracts from LG, LP, and HP did not significantly diminish the expression of il-1ß or inos, although a slight decrease in inos expression was observed. Our findings support that phenolic extracts from L. graveolens, L. palmeri, and H. patens possess antioxidant and anti-inflammatory properties and might be potential therapeutic candidates against oxidative and inflammation-related diseases. PRACTICAL APPLICATIONS: Oregano species have traditionally been exploited as remedies against inflammatory-related diseases, namely headaches, asthma, bowel disorders, and rheumatism. This study explored the antioxidant potential of three Mexican oregano species (Lippia graveolens, Lippia palmeri, and Hedeoma patens) and their anti-inflammatory effects in a murine cell model. Phenolic extracts from oregano showed antioxidant capacity and exerted activity against inflammation by improving anti-inflammatory cytokines secretion or negatively regulating pro-inflammatory cytokines. The results of our study demonstrate that the phenolic extracts from these Mexican oregano species have the potential in treating inflammation-related diseases.


Subject(s)
Antioxidants , Origanum , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Cytokines/genetics , Phenols/pharmacology , Inflammation/drug therapy , Inflammation/genetics , Anti-Inflammatory Agents/pharmacology
15.
Molecules ; 27(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014479

ABSTRACT

Oregano infusions have traditionally been used to treat some diseases related to inflammation and cancer; also, some species have shown antiproliferative activity on cancer cell lines, for example, colon and liver, and this has been attributed to its phytochemical profile, mainly its phenolic compounds. This study aimed to evaluate the cytotoxicity and antiproliferative potential of the polyphenols-rich extracts (PRE) of the oregano species H. patens, L. graveolens, and L. palmeri on breast cancer cell lines. The PRE of the three oregano species were obtained from dried leaves. The extract was characterized by determining antioxidant activity, total phenols content, and identifying the profile of phenolic acids and flavonoids by chromatography UPLC-MS/MS. Furthermore, the cytotoxicity of the extracts was evaluated in vitro on a non-cancer cell line of fibroblast NIH3T3 and the antiproliferative potential on the breast cancer cell lines MDA-MB-231 and MCF-7. L. graveolens showed the highest antioxidant capacity and significantly inhibited the proliferation of MCF-7 and MDA-MB-231 cells at non-cytotoxic concentrations in normal cells, with a similar effect to that cisplatin in MDA-MB-231 cells. Therefore, the polyphenol-rich extract from L. graveolens showed the greatest potential to guide future research on the antiproliferative mechanism of action.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Hedeoma , Lippia , Origanum , Animals , Antineoplastic Agents/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation , Chromatography, Liquid , Female , Humans , Lippia/chemistry , MCF-7 Cells , Mice , NIH 3T3 Cells , Origanum/chemistry , Phenols/analysis , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology , Tandem Mass Spectrometry
16.
Trop Biomed ; 39(4): 575-578, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36602218

ABSTRACT

Malaria and dengue fever are among the most common mosquito-borne diseases worldwide; however, reports of coinfection are rare. We present a case of severe malaria and dengue coinfection in a 16-yearold female patient presenting with fever, thrombocytopenia, pleural effusion, myopericarditis, and acute respiratory distress syndrome. Dengue infection was confirmed by the presence of immunoglobin M antibodies and nonstructural protein 1, while malaria was confirmed by the presence of Plasmodium vivax in thick and thin blood smears. This is the first report of a dengue/malaria coinfection in Mexico.


Subject(s)
Coinfection , Communicable Diseases , Dengue Virus , Dengue , Malaria, Vivax , Malaria , Animals , Humans , Female , Adolescent , Plasmodium vivax , Coinfection/diagnosis , Mexico , Dengue/complications , Dengue/diagnosis , Malaria, Vivax/complications , Malaria, Vivax/diagnosis
17.
Front Nutr ; 8: 790582, 2021.
Article in English | MEDLINE | ID: mdl-34938764

ABSTRACT

The Solanum genus is the largest in the Solanaceae family containing around 2,000 species. There is a great number of edibles obtained from this genus, and globally, the most common are tomato (S. lycopersicum), potato (S. tuberosum), and eggplant (S. melongena). Other fruits are common in specific regions and countries, for instance, S. nigrum, S. torvum, S. betaceum, and S. stramonifolium. Various reports have shown that flavonoids, phenolic acids, alkaloids, saponins, and other molecules can be found in these plants. These molecules are associated with various health-promoting properties against many non-communicable diseases, the main causes of death globally. Nonetheless, the transformations of the structure of antioxidants caused by cooking methods and gastrointestinal digestion impact their potential benefits and must be considered. This review provides information about antioxidant compounds, their bioaccessibility and bioavailability, and their health-promoting effects. Bioaccessibility and bioavailability studies must be considered when evaluating the bioactive properties of health-promoting molecules like those from the Solanum genus.

18.
Molecules ; 26(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34684742

ABSTRACT

The hypoxia conditions in intensive farming systems generate oxidative stress related to oxidative damage and mortality of fish. Corn husk meal (CHM), as a source of antioxidants, might modulate the antioxidant response and prevent the damage elicited by hypoxia. This study evaluated CHM's ability to modulate a hepatic response in Nile tilapia exposed to hypoxia. A control and a test diet supplemented with 25 g CHM/kg feed were formulated. Ninety Nile tilapias (5.09 ± 0.55 g initial weight) were fed for 36 days to evaluate growth, feed efficiency, and hepatic antioxidant response (CAT, catalase; SOD, superoxide dismutase, and GPx, glutathione peroxidase) in normal oxygen conditions (normoxia). After the feeding trial (36 days), fish were exposed to hypoxia (1.5 ± 0.2 mg/L dissolved oxygen), and the hepatic antioxidant response was determined. There was no significant effect of CHM on growth and feed efficiency. The CAT activity was significantly increased in tilapias exposed to hypoxia and fed the test diet compared to the control group exposed to hypoxia. The SOD and GPx activities were unchanged in tilapias in normoxia and hypoxia conditions. Results suggest that CHM dietary supplementation promotes the antioxidant response in Nile tilapia exposed to hypoxia through CAT modulation.


Subject(s)
Animal Feed/analysis , Cichlids/metabolism , Zea mays/metabolism , Animals , Antioxidants/pharmacology , Catalase/metabolism , Cichlids/growth & development , Diet/methods , Dietary Supplements/analysis , Glutathione Peroxidase/metabolism , Hypoxia/drug therapy , Hypoxia/physiopathology , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Phenols/chemistry , Phenols/metabolism , Plant Extracts/pharmacology , Superoxide Dismutase/metabolism , Zea mays/chemistry
19.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34684776

ABSTRACT

Oxidative stress in aquatic organisms might suppress the immune system and propagate infectious diseases. This study aimed to investigate the protective effect of polyphenolic extracts from spent coffee grounds (SCG) against oxidative stress, induced by H2O2, in C. viridis brain cells, through an in vitro model. Hydrophilic extracts from SCG are rich in quinic, ferulic and caffeic acids and showed antioxidant capacity in DPPH, ORAC and FRAP assays. Furthermore, pretreatment of C. viridis brain cells with the polyphenolic extracts from SCG (230 and 460 µg/mL) for 24 h prior to 100 µM H2O2 exposure (1 h) significantly increased antioxidant enzymes activity (superoxide dismutase and catalase) and reduced lipid peroxidation (measured by MDA levels). These results suggest that polyphenols found in SCG extracts exert an antioxidative protective effect against oxidative stress in C. viridis brain cells by stimulating the activity of SOD and CAT.


Subject(s)
Antioxidants/chemistry , Brain/drug effects , Brain/metabolism , Coffee/chemistry , Perciformes/metabolism , Animals , Antioxidants/isolation & purification , Antioxidants/pharmacology , Brain/cytology , Catalase/metabolism , Cells, Cultured , Coffea/chemistry , Fish Proteins/metabolism , Fisheries , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polyphenols , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL